Korean Chemical Engineering Research, Vol.47, No.1, 17-23, February, 2009
메탄 자열개질 반응에 대한 Ni/CeO2-ZrO2 촉매의 영향
Influence of Ni/CeO2-ZrO2 Catalysts on Methane Autothermal Reforming
E-mail:
초록
알루미나가 코팅된 허니컴 구조의 금속모노리스에 담지된 Ni/CeXZr(1-X)O2 촉매특성이 메탄의 자열개질 반응에 대해 연구되었다. Ce/Zr 비를 변화시킨 촉매 중 Ni/Ce0.80Zr0.20O2 촉매가 가장 높은 CH4 전환율을 나타내었다. Ni/Ce0.80Zr0.20O2 촉매의 Ni 함량에 따른 영향이 조사되었고, 15 wt%의 Ni을 담지하였을 때 가장 우수한 활성을 보여주었다. 또한 H2O/CH4 비가 증가할수록 H2 수율은 증가하였다. O2/CH4 비가 증가할수록 CH4 전환율은 향상되고, 반면에 H2 수율은 감소하였다. GHSV=30,000 h-1, S/C/O=2/1/0.5, 반응온도=800 ℃에서 30시간 자열 개질반응을 테스트 한 결과,
Ni(15wt%)/Ce0.80Zr0.20O2 촉매가 우수한 CH4 전환율(≥99%)과 안정성을 보여주었다.
The catalytic behavior of Ni/CeXZr(1-X)O2 loaded on the alumina coated honeycomb monolith was studied for the autothermal reforming reaction of methane. Among the catalysts with the different Ce/Zr ratios, the Ni/Ce0.80Z0.20O2 Catalyst showed the highest conversion of methane. By investigating the effect of Ni content on the Ni/Ce0.80Zr0.20O2 catalysts, the catalyst loaded with 15wt% Ni had the highest activity. Also, H2 yield was increased as H2O/CH4 ratio increased. Methane conversion was improved as O2/CH4 ratio was increased, whereas the yield of H2 was decreased. Among the catalysts tested for 30 hours, Ni(15 wt%)/Ce0.80Zr0.20O2 showed the excellent conversion(≥99%) of methane and the stability at the condition of GHSV=30,000 h-1, feed ratio S/C/O=2/1/0.5 and reaction temperature 800 ℃.
- Ahmed S, Lee SHD, Doss E, Pereira C, Colombo D, Krumpelt M, “Fuel Cell Power Systems,” Progress Report, 40-43(2000)
- Ahmed S, Krumpelt M, Int. J. Hydrogen Energy, 26, 291 (2001)
- Seshan K, Lercher JA, “Carbon Dioxide Chemistry: Environmental Issues,” The Royal Society of Chemistry, 16(1994)
- Armor JN, Appl. Catal. A: Gen., 176(2), 159 (1999)
- Flytzani-Stephanopoulos M, Voecks GE, Int. J. Hydrogen Energy, 8, 539 (1983)
- Jens RRN, J. Catal., 31, 173 (1973)
- Jens RRN, Jens S, Jens KN, Adv. Catal., 47, 65 (2002)
- Borowiecki T, Giecko G, Panczyk M, Appl. Catal. A: Gen., 230(1-2), 85 (2002)
- Wang YH, Zang JC, Fuel, 84, 1926 (2005)
- Xu S, Wang X, Fuel, 84, 563 (2005)
- Wei W, Stagg-Williams SM, Noronha FB, Mattos LV, Passos FB, Catal. Today, 98(4), 553 (2004)
- Cheng ZX, Wu QL, Li JL, Zhu QM, Catal. Today, 30(1-3), 147 (1996)
- Suzuki T, Iwanami H, Yoshinari T, Int. J. Hydrog. Energy, 25(2), 119 (2000)
- Cavallaro S, Chiodo V, Freni S, Mondello N, Frusteri F, Appl. Catal. A: Gen., 249(1), 119 (2003)
- Dias JAC, Assaf JM, J. Power Sources, 130(1-2), 106 (2004)
- Chen XY, Tadd AR, Schwank JW, J. Catal., 251(2), 374 (2007)
- Querino PS, Bispo JRC, Rangel MDC, Catal. Today, 107, 920 (2005)
- Giroux T, Hwang S, Liu Y, Ruettinger W, Shore L, Appl. Catal. B: Environ., 56(1-2), 95 (2005)
- Damyanova S, Perez CA, Schmal M, Bueno JMC, Appl. Catal. A: Gen., 234(1-2), 271 (2002)
- Villegas L, Guilhaume N, Provendier H, Daniel C, Masset F, Mirodatos C, Appl. Catal. A: Gen., 281(1-2), 75 (2005)