화학공학소재연구정보센터
Polymer(Korea), Vol.33, No.1, 72-78, January, 2009
아민화 PP-g-AAc 초극세 이온교환섬유의 산성가스(SOx, NOx) 흡착거동
Behaviour of Acidic Gases(SOx, NOx) Adsorption on Aminated PP-g-AAc Ultrafine Fibrous Ion Exchanger
E-mail:
초록
본 연구는 아민화 polypropylene grafted acrylic acid(이하 PP-g-AAc로 표기) 초극세 이온교환섬유의 SO2, NO2에 대한 흡착거동을 고찰하였다. SO2에 대한 흡착량은 초기농도가 높을수록 증가하였으며 농도가 낮을수록 흡착파과 시간이 짧아졌다. 흡착파과 평형은 60분 이내에 일어났으며 초기농도 100 ppm 이하에서는 약 80%정도 흡착이 이루어졌고, SO2 농도 100 ppm 이상에서 90% 이상 흡착되었다. NO2의 흡착량은 SO2에 비해 낮은 선택흡착성을 나타내었다. 한편, 유속이 증가함에 따라 SO2의 흡착률은 낮아졌으며 60분 이내에 흡착파과 평형에 도달하였고, NO2의 흡착량은 60%로 SO2에 비해 낮았다. 함수율 250 mL/g에서 SO2의 흡착량은 92%이었다. 아민화 PP-g-AAc 초극세 이온교환섬유의 SO2 등온흡착모델은 Freundlich 모델보다 Langmuir 모델에 근접하였다.
In this study, the behaviour of SO2 and NO2 adsorption on aminated ultrafine fibrous PP-g-AAc ion exchanger was investigated. The amount of adsorbed SO2 increased with increasing the initial concentration of SO2. The adsorption breakthrough time in the low concentration of SO2 was faster than high concentration. The adsorption breakthrough occurred within 60 min. Approximately 80% of SO2 was adsorbed below 100 ppm SO2 and 90% of SO2 over 100 ppm SO2 respectively. The selective adsorption rate for NO2 was lower than that of SO2. The adsorption rate for SO2 was decreased with increasing flow rate and that of NO2 was 60%. The breakthrough occurred within 60 min. The adsorption rate for SO2 was 92% in the 250 mL/g water content. Isotherm adsorption model for SO2 was close to the Langmuir rather than Freundlich model.
  1. Rubel AM, Stencel JM, Fuel, 76(6), 521 (1997)
  2. Yoon JK, Lee KH, Park JH, Yoon SI, Ha BK, Mok YS, Trends in Metals & Materials Engineering, 13, 35 (2000)
  3. Chakrabarti A, Mizqauno A, Shimizu K, Matsuoka T, Furuta S, IEEE T. Ind. Appl., 31, 500 (1994)
  4. Creyghton YLM, van Veldhuizen EM, Rutgers WR, Electrical and optical study of pulsed positive corona, Springer-Verlag Pub. Co., Berlin Heidelberg, p.205 (1993)
  5. Scott SJ, A long life, high repetition rate electron beam source, Springer-Verlag Pub. Co., Berlin Heidelberg, p.339 (1993)
  6. Pekarek S, Rosenkranz J, Lonekova H, Generation of electron beam for technological processes, Springer-Verlag Pub. Co., Berlin Heidelberg, p.345 (1993)
  7. Hori T, Saito K, Frusaki S, Sugo T, Okamoto J, Chem. Soc. Japan, 12, 1792 (1986)
  8. Okamoto J, Sugo T, Katakai A, Omichi H, J. Appl. Polym. Sci., 30, 2967 (1985)
  9. Sugasaka K, Katoh S, Taki N, Takahashi A, Umezawa Y, Sep. Sci. Technol., 18, 307 (1983)
  10. Kun KA, Kunin R, Union of South Africa Patent 2689 (1968)
  11. Kun KA, Kunin R, J. Polym. Sci., B2, 587 (1964)
  12. Egawa H, Polym. Proc. Jpn, 32, 38 (1983)
  13. Soldatov VS, Sergeev GI, Martsinkevich RV, Dock. Akad. Nauk USSR, 28, 1009 (1984)
  14. Soldatov VS, Izvest. Acad. Nauk BSSR, Chem. Ser., 6, 39 (1982)
  15. Park HH, Jo HD, Kim IW, Lee HK, Korean Chem. Eng. Res., 46(3), 521 (2008)
  16. Nho YC, Garnett JL, Dworganyn PA, J. Polym. Sci., 31, 163 (1993)
  17. Park JS, Nho YC, Hwang TS, Polym.(Korea), 21(4), 701 (1997)
  18. Park JS, Nho YC, Jin JH, Polym.(Korea), 22(1), 39 (1998)
  19. Shin CS, Lee TH, J. Kor. Inst. Chem. Eng., 27, 588 (1989)
  20. Chen J, Yang L, Wu M, Xi Q, He S, Li Y, Nho YC, Radiat. Phys. Chem., 59, 313 (2000)
  21. Hegazy ESA, Kamal H, Maziad N, Dessouki AM, Nucl. Instrum. Meth. B, 151, 386 (1999)
  22. Tani K, Ohta T, Nii S, Takashi K, J. Chem. Eng. Jpn, 31, 393 (1998)
  23. Choi KJ, Lee CH, Hwang TS, Polymer(Korea), 32, 5 (2008)
  24. Hwang TS, Park MK, Polymer(Korea), 27, 1 (2003)