화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.46, No.6, 1142-1147, December, 2008
MgO를 이용한 다공성 탄소 섬유 제조 및 이를 이용한 연료전지용 촉매 특성
Preparation of Porous Carbon Fiber by Using MgO Powder and Its Characteristics of Catalysts for Fuel Cell
E-mail:
초록
Nano-MgO와 메조페이스 피치로부터 복합 탄소섬유를 만들고 MgO를 제거함으로써 직접 메탄올 연료전지용 촉매담지체로서의 다공성 탄소섬유를 제조하였다. 이 다공성 탄소섬유의 비표면적은 8~58 cm2/g이고, 표면기공구조는 마이크로기공이 거의 없이 MgO 입자크기 유래의 메조기공(10~15 nm)으로 구성된 것이 특징이며, MgO 혼입량(1~10 wt%)에 따라 조절할 수 있었다. 본 다공성 탄소섬유를 담지체로 이용하여 함침법으로 60 wt% Pt-Ru 촉매를 담지하였으며, 제조된 Pt-Ru 촉매의 메탄올 산화 특성 및 단위전지 성능 측정 결과 상용촉매에 비하여 5~10% 이상 향상된 값을 나타내었다.
Nano-structured porous carbon fiber(PCF) for the catalyst supports of the direct methanol fuel cell (DMFC) were prepared from the mesophase pitch by using the nano-MgO powders. Specific surface area of the PCFs was 8~58 m2/g and surface pore structures had almost meso pore diameter of 10~20 nm which were depending on the amount of MgO spheres. Aqueous reduction method was used to load 60 wt% PtRu on the prepared PCF supports. The electro-oxidation activity and single cell performance of the 60 wt% Pt-Ru catalysts were measured by cyclic voltammetry and unit cell test. The performances of these catalysts increased by 5~10% compared with one of commercial catalyst.
  1. Joo SH, Choi SJ, Oh IW, Kwak JH, Liu Z, Terasaki O, Ryoo R, Nature, 412, 169 (2001)
  2. Han SJ, Sohn KN, Hyeon TH, Chem. Mater., 12, 3337 (2000)
  3. Hong EH, Jung YH, Lee KH, Korean J. Chem. Eng., 17(2), 237 (2000)
  4. Yim KS, Eom SY, Ryu SK, Edie DD, HWAHAK KONGHAK, 41(4), 503 (2003)
  5. Lim SY, Hong SH, Qiao W, Duayne Whitehurst D, Yoon SH, Mochida I, An B, Yokogawa K, Carbon, 45, 173 (2007)
  6. Cho TH, Kim SY, Cho KH, Ryu SK, HWAHAK KONGHAK, 38(3), 338 (2000)
  7. Ryu SK, Eom SY, Yim KS, EdieDan D, Korean Chem. Eng. Res., 42(3), 288 (2004)
  8. Basova YV, Edie DD, Badheka PY, Bellam HC, Carbon, 43, 1533 (2005)
  9. Hyeon TH, Han SJ, Sung YE, Park KW, Kim YW, Angewandte Chemie-International Edition, 42, 4352 (2003)
  10. Jung DH, Jung JH, Hong SH, Peck DH, Shin DR, Kim ES, Carbon Science, 4, 121 (2003)
  11. Park GG, Yang TH, Yoon YG, Lee WY, Kim CS, International Journal of Hydrogen Energy, 28, 645 (2003)
  12. Lee JB, Park YK, Yang OB, Kang Y, Jun KW, Lee YJ, Kim HY, Lee KH, Choi WC, J. Power Sources, 158(2), 1251 (2006)
  13. Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP, J. Power Sources, 155(2), 95 (2006)
  14. Mora E, Blanco C, Prada V, Santamaria R, Granda M, Menendez R, Carbon, 40, 2719 (2002)
  15. Edie DD, Dunham MG, Carbon, 27, 647 (1989)
  16. Nam KD, Kim TJ, Kim SK, Lee BR, Peck DH, Ryu SK, Jung DH, J. Korean Ind. Eng. Chem., 17(2), 223 (2006)
  17. Korai Y, Ishida S, Watanabe F, Yoon SH, Wang YG, Mochida I, Kato I, Nakamura T, Sakai Y, Komatsu M, Carbon, 35, 1733 (1997)
  18. Ryu SK, Eom SY, Cho TH, Edie DD, Carbon Science, 4, 168 (2003)
  19. Gergg SJ, Sing KSW, Adsorption, Surface Area and Porosity, 2nd ed., Academic Press Inc., New York, NY(1982)
  20. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure & Appl. Chem., 57, 603 (1985)
  21. Lee CH, Lee CW, Kim DI, Jung DH, Kim CS, Shin DR, J. Power Sources, 86(1-2), 478 (2000)
  22. Hyun MS, Kim SK, Lee BR, Peck DH, Shul YG, Jung DH, Catalysis Today, 132, 138 (2008)
  23. Antolini E, Cardellini F, J. Alloys and Compounds, 315, 118 (2001)
  24. Cattaneo C, de Pinto MIS, Mishima H, de Mishima BAL, Lescano D, Cornaglia L, J. Electroanal. Chem., 461(1-2), 32 (1999)
  25. Edie DD, Carbon, 36, 345 (1998)