Korean Chemical Engineering Research, Vol.46, No.6, 1142-1147, December, 2008
MgO를 이용한 다공성 탄소 섬유 제조 및 이를 이용한 연료전지용 촉매 특성
Preparation of Porous Carbon Fiber by Using MgO Powder and Its Characteristics of Catalysts for Fuel Cell
E-mail:
초록
Nano-MgO와 메조페이스 피치로부터 복합 탄소섬유를 만들고 MgO를 제거함으로써 직접 메탄올 연료전지용 촉매담지체로서의 다공성 탄소섬유를 제조하였다. 이 다공성 탄소섬유의 비표면적은 8~58 cm2/g이고, 표면기공구조는 마이크로기공이 거의 없이 MgO 입자크기 유래의 메조기공(10~15 nm)으로 구성된 것이 특징이며, MgO 혼입량(1~10 wt%)에 따라 조절할 수 있었다. 본 다공성 탄소섬유를 담지체로 이용하여 함침법으로 60 wt% Pt-Ru 촉매를 담지하였으며, 제조된 Pt-Ru 촉매의 메탄올 산화 특성 및 단위전지 성능 측정 결과 상용촉매에 비하여 5~10% 이상 향상된 값을 나타내었다.
Nano-structured porous carbon fiber(PCF) for the catalyst supports of the direct methanol fuel cell
(DMFC) were prepared from the mesophase pitch by using the nano-MgO powders. Specific surface area of the PCFs was 8~58 m2/g and surface pore structures had almost meso pore diameter of 10~20 nm which were depending on the amount of MgO spheres. Aqueous reduction method was used to load 60 wt% PtRu on the prepared PCF supports. The electro-oxidation activity and single cell performance of the 60 wt% Pt-Ru catalysts were measured by cyclic voltammetry and unit cell test. The performances of these catalysts increased by 5~10% compared with one of commercial catalyst.
Keywords:Porous Carbon Fiber;Melt-spinning;Catalyst Support;Direct Methanol Fuel Cell;Single Cell Test
- Joo SH, Choi SJ, Oh IW, Kwak JH, Liu Z, Terasaki O, Ryoo R, Nature, 412, 169 (2001)
- Han SJ, Sohn KN, Hyeon TH, Chem. Mater., 12, 3337 (2000)
- Hong EH, Jung YH, Lee KH, Korean J. Chem. Eng., 17(2), 237 (2000)
- Yim KS, Eom SY, Ryu SK, Edie DD, HWAHAK KONGHAK, 41(4), 503 (2003)
- Lim SY, Hong SH, Qiao W, Duayne Whitehurst D, Yoon SH, Mochida I, An B, Yokogawa K, Carbon, 45, 173 (2007)
- Cho TH, Kim SY, Cho KH, Ryu SK, HWAHAK KONGHAK, 38(3), 338 (2000)
- Ryu SK, Eom SY, Yim KS, EdieDan D, Korean Chem. Eng. Res., 42(3), 288 (2004)
- Basova YV, Edie DD, Badheka PY, Bellam HC, Carbon, 43, 1533 (2005)
- Hyeon TH, Han SJ, Sung YE, Park KW, Kim YW, Angewandte Chemie-International Edition, 42, 4352 (2003)
- Jung DH, Jung JH, Hong SH, Peck DH, Shin DR, Kim ES, Carbon Science, 4, 121 (2003)
- Park GG, Yang TH, Yoon YG, Lee WY, Kim CS, International Journal of Hydrogen Energy, 28, 645 (2003)
- Lee JB, Park YK, Yang OB, Kang Y, Jun KW, Lee YJ, Kim HY, Lee KH, Choi WC, J. Power Sources, 158(2), 1251 (2006)
- Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP, J. Power Sources, 155(2), 95 (2006)
- Mora E, Blanco C, Prada V, Santamaria R, Granda M, Menendez R, Carbon, 40, 2719 (2002)
- Edie DD, Dunham MG, Carbon, 27, 647 (1989)
- Nam KD, Kim TJ, Kim SK, Lee BR, Peck DH, Ryu SK, Jung DH, J. Korean Ind. Eng. Chem., 17(2), 223 (2006)
- Korai Y, Ishida S, Watanabe F, Yoon SH, Wang YG, Mochida I, Kato I, Nakamura T, Sakai Y, Komatsu M, Carbon, 35, 1733 (1997)
- Ryu SK, Eom SY, Cho TH, Edie DD, Carbon Science, 4, 168 (2003)
- Gergg SJ, Sing KSW, Adsorption, Surface Area and Porosity, 2nd ed., Academic Press Inc., New York, NY(1982)
- Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure & Appl. Chem., 57, 603 (1985)
- Lee CH, Lee CW, Kim DI, Jung DH, Kim CS, Shin DR, J. Power Sources, 86(1-2), 478 (2000)
- Hyun MS, Kim SK, Lee BR, Peck DH, Shul YG, Jung DH, Catalysis Today, 132, 138 (2008)
- Antolini E, Cardellini F, J. Alloys and Compounds, 315, 118 (2001)
- Cattaneo C, de Pinto MIS, Mishima H, de Mishima BAL, Lescano D, Cornaglia L, J. Electroanal. Chem., 461(1-2), 32 (1999)
- Edie DD, Carbon, 36, 345 (1998)