Korean Chemical Engineering Research, Vol.46, No.5, 1002-1007, October, 2008
PEMFC용 플라즈마 개질 시스템의 수소 생산
Hydrogen Production for PEMFC Application in Plasma Reforming System
E-mail:
초록
이 논문의 목적은 PEMFC 작동을 위한 플라즈마 개질 시스템의 최적 조건을 연구한 것이다. 플라즈마 개질 반응기는 니켈 촉매 반응기와 동시에 사용하여 수소 생성을 증대하였다. 또한 수성가스 전환 반응기 및 선택적 산화 반응기는 연료전지의 촉매 피독에 영향을 주는 일산화탄소의 농도를 10 ppm 이하로 줄이기 위하여 제작되었다. 플라즈마 개질기에서 최대 수소생산 조건은 S/C 비 3.2, 메탄 2.0 L/min, 촉매반응기 온도는 700±5 oC 그리고 입력전력 900 W이다. 이때의 합성가스의 농도는 H2 70.2%, CO 7.5%, CO2 16.2%, CH4 1.8% 이다. 수소 수율, 수소 선택도 그리고 메탄 전환율는 각각 56.8%, 38.1%, 92.2%이다. 에너지 효율과 에너지 요구량은 37.0%, 183.6 kJ/mol 이다. 추가적으로 CO2/CH4 비 실험을 진행하였다. 또한 수성가스 전환 반응기는 플라즈마 개질 반응기의 최적조건으로 실험을 진행하였
으며, 출구 농도는 H2 68.0%, CO 337 ppm, CO2 24.0%, CH4 2.2%, C2H4 0.4%, C2H6 4.1% 이다. 이때의 선택적 산화 반응기의 실험결과는 H2 51.9%, CO 0%, CO2 17.3%를 나타냈다.
The purpose of this paper studied the optimal hydrogen production condition of plasma reforming system to operate the PEMFC. Plasma reforming reactor used with Ni catalyst reactor at the same time, So H2 concentration increased. Also the WGS and PrOx reactor were designed to remove CO concentration under 10 ppm, because CO has effect on catalyst poisoning of PEMFC. The maximum H2 production condition in plasma reforming system was S/C ratio 3.2, CH4 flow rate 2.0 L/min, catalytic reactor temperature 700±5 oC and input power 900 W. At this time, the concentration of produced syngas was H2 70.2%, CO 7.5%, CO2 16.2%, CH4 1.8%. The hydrogen yield, hydrogen selectivity and CH4 conversion rate were 56.8%, 38.1% and 92.2% respectively. The energy efficiency and specific energy requirement were 37.0%, 183.6 kJ/mol. In additional, The experiment of CO2/CH4 ratio proceeded. Also WGS reactor experiment was proceeding on optimum condition of plasma reactor and the exit concentration were H2 68%, CO 337 ppm, CO2 24.0%, CH4 2.2%, C2H4 0.4%, C2H6 4.1%. At this time, experiment result of PrOx reactor were H2 51.9%, CO 0%, CO2 17.3%.
- Chin SY, Alexeev OS, Amiridis MD, Appl. Catal. A: Gen., 286(2), 157 (2005)
- Srinivas S, Dhingra A, Im H, Gulari E, Appl. Catal. A: Gen., 274(1-2), 285 (2004)
- Yoon WL, Park JW, Rhee YW, Han MW, Jeong JH, Park JS, Jung H, Lee HT, Kim CS, HWAHAK KONGHAK, 41(3), 389 (2003)
- Jhalani A, Schmidt LD, Catal. Lett., 104(3-4), 103 (2005)
- Nishimoto H, Nakagawa K, Ikenaga N, Nishitani-Gamo M, Ando T, Suzuki T, Appl. Catal. A: Gen., 264(1), 65 (2004)
- Futamura S, Kabashima H, Einaga E, IEEE Transactions on Industry Applications, 40, 1476 (2004)
- Lee DH, Kim KT, Cha MS, Song YH, Proceedings of the Combustion Institute, 31, 3343 (2007)
- Petitpas G, Rollier JD, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L, International Journal of Hydrogen Energy, 32, 2848 (2007)
- Moon DJ, Sreekumar K, Lee SD, Lee BG, Kim HS, Appl. Catal. A: Gen., 215(1-2), 1 (2001)
- Son JE, Korean Chem. Eng. Res., 42(1), 1 (2004)