화학공학소재연구정보센터
Macromolecular Research, Vol.16, No.6, 549-554, August, 2008
Proton Conducting Crosslinked Membranes by Polymer Blending of Triblock Copolymer and Poly(vinyl alcohol)
E-mail:
Proton conducting crosslinked membranes were prepared using polymer blends of polystyrene-bpoly(hydroxyethyl acrylate)-b-poly(styrene sulfonic acid) (PS-b-PHEA-b-PSSA) and poly(vinyl alcohol) (PVA). PS-b-PHEA-b-PSSA triblock copolymer at 28:21:51 wt% was synthesized sequentially using atom transfer radical polymerization (ATRP). FT-IR spectroscopy showed that after thermal (120 ℃, 2 h) and chemical (sulfosuccinic acid, SA) treatments of the membranes, the middle PHEA block of the triblock copolymer was crosslinked with PVA through an esterification reaction between the -OH group of the membrane and the -COOH group of SA. The ion exchange capacity (IEC) decreased from 1.56 to 0.61 meq/g with increasing amount of PVA. Therefore, the proton conductivity at room temperature decreased from 0.044 to 0.018 S/cm. However, the introduction of PVA resulted in a decrease in water uptake from 87.0 to 44.3%, providing good mechanical properties applicable to the membrane electrode assembly (MEA) of fuel cells. Transmission electron microscopy (TEM) showed that the membrane was microphase-separated with a nanometer range with good connectivity of the SO3H ionic aggregates. The power density of a single H2/O2 fuel cell system using the membrane with 50 wt% PVA was 230 mW/cm2 at 70 ℃ with a relative humidity of 100%. Thermogravimetric analysis (TGA) also showed a decrease in the thermal stability of the membranes with increasing PVA concentration.
  1. Rikukawa M, Sanui K, Prog. Polym. Sci, 25, 1463 (2000)
  2. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE, Chem. Rev., 104(10), 4587 (2004)
  3. Deluca NW, Elabd YA, J. Polym. Sci. B: Polym. Phys., 44(16), 2201 (2006)
  4. Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, Kaliaguine S, J. Polym. Sci. A: Polym. Chem., 42(12), 2866 (2004)
  5. Won J, Ahn SM, Cho HD, Ryu JY, Ha HY, Kang YS, Macromol. Res., 15(5), 459 (2007)
  6. Mikhailenko SUD, Wang KP, Kaliaguine S, Xing PX, Robertson GP, Guiver MD, J. Membr. Sci., 233(1-2), 93 (2004)
  7. Lee DK, Kim YW, Choi JK, Min BR, Kim JH, J. Appl. Polym. Sci., 107, 819 (2008)
  8. Chen JH, Asano M, Yamaki T, Yoshida M, J. Power Sources, 158(1), 69 (2006)
  9. Yin Y, Hayashi S, Yamada O, Kita H, Okamoto K, Macromol. Rapid Commun., 26(9), 696 (2005)
  10. Kim DS, Park HB, Rhim JW, Lee YM, Solid State Ion., 176(1-2), 117 (2005)
  11. Matsen MW, Bates FS, Macromolecules, 29(4), 1091 (1996)
  12. Davidock DA, Hillmyer MA, Lodge TP, Macromolecules, 36(13), 4682 (2003)
  13. Rubatat L, Shi ZQ, Diat O, Holdcroft S, Frisken BJ, Macromolecules, 39(2), 720 (2006)
  14. Vie P, Paronen M, Stromgard M, Rauhala E, Sundholm F, J. Membr. Sci., 204(1-2), 295 (2002)
  15. Meier-Haack J, Taeger A, Vogel C, Schlenstedt K, Lenk W, Lehmann D, Sep. Purif. Technol., 41(3), 207 (2005)
  16. Taeger A, Vogel C, Lehmann D, Lenk W, Schlenstedt K, Meier-Haack J, Macromol. Symp., 210, 175 (2004)
  17. Taeger A, Vogel C, Lehmann D, Jehnichen D, Komber H, Meier-Haack J, Ochoa NA, Nunes SP, Peinemann KV, React. Funct. Polym., 57, 77 (2003)
  18. Pivovar BS, Wang YX, Cussler EL, J. Membr. Sci., 154(2), 155 (1999)
  19. Kim SY, Shin HS, Lee YM, Jeong CN, J. Appl. Polym. Sci., 73(9), 1675 (1999)
  20. Kim DS, Guiver MD, Seo MY, Cho HI, Kim DH, Rhim JW, Moon GY, Nam SY, Macromol. Res., 15(5), 412 (2007)
  21. Okamura H, Takatori Y, Tsunooka M, Shirai M, Polymer, 43(11), 3155 (2002)
  22. Ishizu K, Satoh J, Sogabe A, J. Colloid Interface Sci., 274(2), 472 (2004)
  23. Rhim JW, Park HB, Lee CS, Jun JH, Kim DS, Lee YM, J. Membr. Sci., 238(1-2), 143 (2004)
  24. Huang HS, Chen CY, Lo SC, Lin CJ, Chen SJ, Lin LJ, Appl. Surf. Sci., 253(5), 2685 (2006)
  25. Ding J, Chuy C, Holdcroft S, Chem. Mater., 13, 2231 (2001)