Macromolecular Research, Vol.16, No.6, 549-554, August, 2008
Proton Conducting Crosslinked Membranes by Polymer Blending of Triblock Copolymer and Poly(vinyl alcohol)
E-mail:
Proton conducting crosslinked membranes were prepared using polymer blends of polystyrene-bpoly(hydroxyethyl acrylate)-b-poly(styrene sulfonic acid) (PS-b-PHEA-b-PSSA) and poly(vinyl alcohol) (PVA). PS-b-PHEA-b-PSSA triblock copolymer at 28:21:51 wt% was synthesized sequentially using atom transfer radical polymerization (ATRP). FT-IR spectroscopy showed that after thermal (120 ℃, 2 h) and chemical (sulfosuccinic acid, SA) treatments of the membranes, the middle PHEA block of the triblock copolymer was crosslinked with PVA through an esterification reaction between the -OH group of the membrane and the -COOH group of SA. The ion exchange capacity (IEC) decreased from 1.56 to 0.61 meq/g with increasing amount of PVA. Therefore, the proton conductivity at room temperature decreased from 0.044 to 0.018 S/cm. However, the introduction of PVA resulted in a decrease in water uptake from 87.0 to 44.3%, providing good mechanical properties applicable to the membrane electrode assembly (MEA) of fuel cells. Transmission electron microscopy (TEM) showed that the membrane was microphase-separated with a nanometer range with good connectivity of the SO3H ionic aggregates. The power density of a single H2/O2 fuel cell system using the membrane with 50 wt% PVA was 230 mW/cm2 at 70 ℃ with a relative humidity of 100%. Thermogravimetric analysis (TGA) also showed a decrease in the thermal stability of the membranes with increasing PVA concentration.
Keywords:polymer electrolyte membrane fuel cell (PEMFC);crosslinked;triblock copolymer;proton conductivity;polymer blend
- Rikukawa M, Sanui K, Prog. Polym. Sci, 25, 1463 (2000)
- Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE, Chem. Rev., 104(10), 4587 (2004)
- Deluca NW, Elabd YA, J. Polym. Sci. B: Polym. Phys., 44(16), 2201 (2006)
- Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, Kaliaguine S, J. Polym. Sci. A: Polym. Chem., 42(12), 2866 (2004)
- Won J, Ahn SM, Cho HD, Ryu JY, Ha HY, Kang YS, Macromol. Res., 15(5), 459 (2007)
- Mikhailenko SUD, Wang KP, Kaliaguine S, Xing PX, Robertson GP, Guiver MD, J. Membr. Sci., 233(1-2), 93 (2004)
- Lee DK, Kim YW, Choi JK, Min BR, Kim JH, J. Appl. Polym. Sci., 107, 819 (2008)
- Chen JH, Asano M, Yamaki T, Yoshida M, J. Power Sources, 158(1), 69 (2006)
- Yin Y, Hayashi S, Yamada O, Kita H, Okamoto K, Macromol. Rapid Commun., 26(9), 696 (2005)
- Kim DS, Park HB, Rhim JW, Lee YM, Solid State Ion., 176(1-2), 117 (2005)
- Matsen MW, Bates FS, Macromolecules, 29(4), 1091 (1996)
- Davidock DA, Hillmyer MA, Lodge TP, Macromolecules, 36(13), 4682 (2003)
- Rubatat L, Shi ZQ, Diat O, Holdcroft S, Frisken BJ, Macromolecules, 39(2), 720 (2006)
- Vie P, Paronen M, Stromgard M, Rauhala E, Sundholm F, J. Membr. Sci., 204(1-2), 295 (2002)
- Meier-Haack J, Taeger A, Vogel C, Schlenstedt K, Lenk W, Lehmann D, Sep. Purif. Technol., 41(3), 207 (2005)
- Taeger A, Vogel C, Lehmann D, Lenk W, Schlenstedt K, Meier-Haack J, Macromol. Symp., 210, 175 (2004)
- Taeger A, Vogel C, Lehmann D, Jehnichen D, Komber H, Meier-Haack J, Ochoa NA, Nunes SP, Peinemann KV, React. Funct. Polym., 57, 77 (2003)
- Pivovar BS, Wang YX, Cussler EL, J. Membr. Sci., 154(2), 155 (1999)
- Kim SY, Shin HS, Lee YM, Jeong CN, J. Appl. Polym. Sci., 73(9), 1675 (1999)
- Kim DS, Guiver MD, Seo MY, Cho HI, Kim DH, Rhim JW, Moon GY, Nam SY, Macromol. Res., 15(5), 412 (2007)
- Okamura H, Takatori Y, Tsunooka M, Shirai M, Polymer, 43(11), 3155 (2002)
- Ishizu K, Satoh J, Sogabe A, J. Colloid Interface Sci., 274(2), 472 (2004)
- Rhim JW, Park HB, Lee CS, Jun JH, Kim DS, Lee YM, J. Membr. Sci., 238(1-2), 143 (2004)
- Huang HS, Chen CY, Lo SC, Lin CJ, Chen SJ, Lin LJ, Appl. Surf. Sci., 253(5), 2685 (2006)
- Ding J, Chuy C, Holdcroft S, Chem. Mater., 13, 2231 (2001)