화학공학소재연구정보센터
Polymer(Korea), Vol.32, No.4, 313-321, July, 2008
UV경화형 아크릴계 점착제의 박리 에너지 변화
The Peel Energy Behavior of UV-Cured Acrylic PSAs
E-mail:
초록
UV개시에 의해 광경화형 아크릴 공중합체를 합성하고, 제조된 아크릴 점착제(PSA)의 박리 에너지와 물리적 특성을 조사하였다. 이때 acrylic acid(AA)의 함량을 변화시켜 점착제의 물성을 변화시켰으며, 피착제의 표면 거칠기, 표면 요철방향, 점착제의 두께를 변화시킴으로써 박리 에너지의 변화 추이를 조사하였다. 공단량체인 acrylic acid의 함량이 증가함에 따라 표면 거칠기가 낮은 피착제가 높은 박리 에너지를 보였으며 점착제의 두께가 두꺼워 질수록 증가하였다. 또한 피착제 표면의 요철방향이 박리방향과 수평일 때 특히 높은 박리 에너지를 갖는 것으로 나타났다. 이것은 점착제의 두께 감소와 피착제 표면 거칠기의 증가가 wetting의 감소를 초래하지만 박리 시 저항력은 오히려 증가하는 경향을 나타내기 때문일 것이라는 예상과도 잘 일치한다.
Acrylic pressure sensitive adhesive(PSA) was prepared by UV radiation curing and the peel energy and physical properties of PSA were investigated. The increase of amount of acrylic acid leads to improve the peel energy, associated with the substrate having smooth surface and high layer thickness. The high peel energy is obtained when the direction of irregularity in substrate is horizontal with the peeling direction. This is attributed to the increase of resistance to peeling in spite of decrease of wettting and the result corresponds to our supposition.
  1. Satas D, Handbook of Pressure Sensitive Adhesive Technology, 2nd edition, Van Nostrand Reinhold, New York (1989)
  2. Istvan Benedek, Pressure-Sensitive Adhesives and Applications, 2nd edition, Marcel Dekker, New York (2004)
  3. Pizzi A, Mittal KL, Adhesive Technology and Application, Marcel Dekker, New York (2003)
  4. Kinloch AJ, Adhesion and Adhesives, Science and Technology, Lausanne (1986)
  5. Czech Z, J. Appl. Polym. Sci., 81(13), 3212 (2001)
  6. Pocius AV, Adhesion and Adhesives Technology, Carl Hanser Verlag, Munich (2002)
  7. Hong JH, UV Radiation Curing, UV Radiation Curing (2002)
  8. Cho KW, Lee DH, Polym. Sci. Technol., 6, 545 (1995)
  9. Asahara J, Hori N, Takemura A, Ono H, J. Appl. Polym. Sci., 87(9), 1493 (2003)
  10. Czech Z, Int. J. Adhes. Adhes., 24, 503 (2004)
  11. Aymonier A, Ledercq D, Tordjeman P, Papon E, Villenave JJ, J. Appl. Polym. Sci., 89(10), 2749 (2003)
  12. Tordjeman P, Papon E, Villenave JJ, J. Polym. Sci. B: Polym. Phys., 38(9), 1201 (2000)
  13. Dupre A, Theorie Mecanique de la Chaleur, Gauthier-Villars, Paris, p. 369 (1869)
  14. Gent AN, Schultz J, Proc. 162nd ACS Meeting, 31, 113 (1971)
  15. Gent AN, Schultz J, J. Adhes., 3, 281 (1972)
  16. Packham DE, Handbook of Adhesion, 2nd edition, John Wiley & Sons, Ltd, New York (2005)
  17. Wang YY, Li CJ, Ohmori A, Thin Solid Films, 485(1-2), 141 (2005)
  18. Shahid M, Hashim SA, Int. J. Adhes. Adhes., 22, 235 (2002)
  19. Harris AF, Beevers A, Int. J. Adhes. Adhes., 19, 445 (1999)
  20. Ben-Zion O, Nussinovitch A, J. Adehsion Sci. Technol., 16, 599 (2002)
  21. Chiche A, Et AL, C. R. Acad. Sci. Paris, t. 1, Serie IV, p.1197 (2000)
  22. Sekercioglu T, Et AL, J. Mater. Process. Technol., 142, 82 (2003)
  23. Sargent JP, Int. J. Adhes. Adhes., 26, 151 (2006)
  24. Kwon JW, Lee DG, J. Adhes. Sci. Technol., 14, 1085 (2000)
  25. Lee DG, Kim S, Yong-Taek I, J. Adhes., 35, 39 (1991)
  26. Posco Catalogue, Stainless, Pohang (2001)
  27. Owens DK, Wendt RC, J. Appl. Polym. Sci., 13, 1741 (1969)
  28. Fowkes FM, Ind. Eng. Chem., 56, 40 (1964)
  29. Owens DK, Wendt RC, J. Appl. Polym. Sci., 13, 1740 (1969)
  30. Kaelble DH, Uy KC, J. Adhes., 2, 50 (1970)
  31. Tordjeman P, Papon E, Villenave JJ, J. Chem. Phys., 113(23), 10712 (2000)
  32. Morel N, Tordjeman P, Duwattez J, Papon E, J. Colloid Interface Sci., 280(2), 374 (2004)
  33. Yang WH, J. Appl. Polym. Sci., 55, 64 (1995)
  34. Tse MF, J. Adhes. Sci. Technol., 3, 551 (1989)