화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.25, No.4, 631-636, July, 2008
Improved system identification method for Hammerstein-Wiener processes
E-mail:
We propose a new system identification method for Hammerstein-Wiener processes, in which an input static nonlinear block, a linear dynamic block, and an output static nonlinear block are connected in a series. The proposed method can estimate the model parameters in a very simple way without solving the full-dimensional nonlinear optimization problem by activating the process with a specially designed test signal, composed of a relay feedback signal, a binary signal and a multi-step signal. The proposed method analytically identifies the output nonlinear static function and the input nonlinear static function from the relay signal and the multi-step signal, respectively. The linear dynamic subsystem is identified from the relay feedback signal and the binary signal with existing well-established linear system identification methods. We demonstrate with a simple example that the proposed method can be successfully applied to identify the Hammerstein-Wiener-type nonlinear process.
  1. Haber R, Unbehauen H, Automatica, 26, 651 (1990)
  2. Bai E, Automatica, 34, 333 (1998)
  3. Bai E, Automatica, 38, 967 (2002)
  4. Zhu Y, Automatica, 38, 1607 (2002)
  5. Crama P, Schoukens J, Automatica, 40, 1543 (2004)
  6. Sung SW, Ind. Eng. Chem. Res., 41(17), 4295 (2002)
  7. Lee YJ, Sung SW, Park S, Park S, Ind. Eng. Chem. Res., 43(23), 7521 (2004)
  8. Park HC, Sung SW, Lee J, Ind. Eng. Chem. Res., 45(3), 1029 (2006)
  9. Ljung L, System identification: Theory for the user, Prentice-Hall. Englewood Cliffs, NJ (1987)
  10. Sung SW, Lee IB, Ind. Eng. Chem. Res., 40(24), 5743 (2001)
  11. Soderstrom T, Stoica P, System identification, Prentice- Hall, Englewood Cliffs, NJ (1989)
  12. Larimore WE, Canonical variate analysis in identification, filtering, and adaptive control, Proceedings of the 29th IEEE Conference On Decision and Control, Honolulu, HI, 596 (1990)
  13. Verhaegen M, Automatica, 30, 1877 (1994)
  14. Van Overschee P, De Moor B, Automatica, 30, 75 (1994)
  15. Sung SW, Lee IB, Korean J. Chem. Eng., 16(1), 45 (1999)
  16. Astrom KJ, Hagglund T, Automatica, 20, 645 (1984)
  17. Hang CC, Astrom KJ, Wang QG, J. Proc. Contr., 12, 143 (2002)
  18. Lee J, Kim DH, Chem. Eng. Sci., 56(23), 6711 (2001)
  19. Sung SW, Lee JT, Chem. Eng. Sci., 59(7), 1515 (2004)
  20. Sung SW, Park JH, Lee IB, Ind. Eng. Chem. Res., 34(11), 4133 (1995)
  21. Shen SH, Yu HD, Yu CC, Chem. Eng. Sci., 51(8), 1187 (1996)
  22. Tan KK, Lee TH, Wang QG, AIChE J., 42(9), 2555 (1996)
  23. Friman M, Waller KV, Ind. Eng. Chem. Res., 36(7), 2662 (1997)
  24. Hang CC, Astrom KJ, Ho WK, Automatica, 29, 563 (1993)
  25. Park JH, Sung SW, Lee I, Automatica, 33, 711 (1997)
  26. Shen SH, Wu JS, Yu CC, Ind. Eng. Chem. Res., 35(5), 1642 (1996)
  27. Sung SW, Lee J, Ind. Eng. Chem. Res., 45(12), 4028 (2006)