화학공학소재연구정보센터
Macromolecular Research, Vol.16, No.5, 411-417, July, 2008
Effect of Natural Fiber Surface Treatments on the Interfacial and Mechanical Properties of Henequen/Polypropylene Biocomposites
E-mail:
The surfaces of henequen fibers, which can be obtained from the leaves of agave plants, were treated with two different media, tap water and sodium hydroxide, that underwent both soaking and ultrasonic methods for the fiber surface treatment. Various biocomposites were fabricated with untreated and treated, chopped henequen fibers and polypropylene using a compression molding method. The result is discussed in terms of interfacial shear strength, flexural properties, dynamic mechanical properties, and fracture surface observations of the biocomposites. The soaking (static method) and ultrasonic (dynamic method) treatments with tap water and sodium hydroxide at different concentrations and treatment times significantly influenced the interfacial, flexural and dynamic mechanical properties of henequen/polypropylene biocomposites. The alkali treatment was more effective than the water treatment in improving the interfacial and mechanical properties of randomly oriented, chopped henequen/PP biocomposites. In addition, the application of the ultrasonic method to each treatment was relatively more effective in increasing the properties than the soaking method, depending on the treatment medium and condition. The greatest improvement in the properties studied was achieved by ultrasonic alkalization of natural fibers, which was in agreement with the other results of interfacial shear strength, flexural strength and modulus, storage modulus, and fracture surfaces.
  1. Mohanty AK, Misra M, Hinrichsen G, Macromol. Mater. Eng., 276/277, 1 (2000)
  2. Cho D, Lee SG, Park WH, Han SO, Polym. Sci. Technol., 13(4), 460 (2002)
  3. Rana AK, Mandal A, Bandyopadhyay S, Compos. Sci. Technol., 63, 801 (2003)
  4. Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H, Compos. Sci. Technol., 63, 1281 (2003)
  5. Arzondo LM, Perez CJ, Carella JM, Polym. Eng. Sci., 45(4), 613 (2005)
  6. Nair KCM, Thomas S, Groeninckx G, Compos. Sci. Technol., 61, 2519 (2001)
  7. Pang Y, Cho D, Han SO, Park WH, Macromol. Res., 13(5), 453 (2005)
  8. Yang GC, Zeng HM, Li JJ, Fiber Reinf. Plastics Compos., 3, 12 (1997)
  9. Yang CB, Hsu CC, J. Appl. Polym. Sci., 58(8), 1245 (1995)
  10. Canche-Escamillar G, Rodriguez-Laviada J, Cauich-Cupul JI, Mendizabal E, Puig JE, Herrera-Franco PJ, Composites Part A, 33, 539 (2002)
  11. Herrera-Franco PJ, Valadez-Gonzalez A, Compos. Pt. B, 36, 597 (2005)
  12. Han SO, Cho D, Park WH, Drzal LT, Compos. Interfaces, 12(2/3), 231 (2006)
  13. Kum CK, Sung YT, Kim YS, Lee HG, Kim WN, Lee HS, Yoon HG, Macromol. Res., 15(4), 308 (2007)
  14. Kim JC, Chang JH, Macromol. Res., 15(5), 449 (2007)
  15. Singleton ACN, Baillie CA, Beaumont PWR, Peijs T, Composites Part B, 34, 519 (2003)
  16. Mohanty AK, Misra M, Drzal LT, Compos. Interfaces, 8, 313 (2001)
  17. Mwaikambo LY, Ansell MP, Die Angew. Makromol. Chem., 272, 108 (1999)
  18. Joseph S, Sreekala MS, Oommen Z, Koshy P, Thomas S, Compos. Sci. Technol., 62, 1857 (2002)
  19. Arbelaiz A, Cantero G, Fernandez B, Mondragon I, Ganan R, Kenny JM, Polym. Compos., 26, 324 (2005)
  20. Lee SH, Wang S, Composites Part A, 37, 80 (2006)
  21. Yuan X, Jayaraman K, Bhattacharyya D, J. Adhesion Sci. Technol., 18, 1027 (2004)
  22. Cho D, Lee SM, Lee SG, Park WH, Am. J. Appl. Sci., Special Issue (Bio-compat. Bio-compos. Mater.), 17 (2006)
  23. Brown RP, Ed., Handbook of Plastics Test Methods, 3rd Ed., Longman Scientific & Technical, London, 1998, Chapter 8
  24. Cho D, Yoon SB, Seo JM, Han SO, Park WH, Proc. (CD) 12th Int’l Conf. Compos. Eng./Nano (ICCE-12), August 1-6, Tenerife, Spain (2005)
  25. Seo JM, Cho D, Park WH, Han SO, Hwang TW, Choi CH, Jung SJ, Lee CS, J. Biobased Mater. Bioenergy, 1, 331 (2007)
  26. Rong MZ, Zhong MQ, Liu Y, Yang GG, Zheng HM, Compos. Sci. Technol., 61, 1437 (2001)
  27. O’Donnell A, Dweib MA, Wool RP, Compos. Sci. Technol., 64, 1135 (2004)