화학공학소재연구정보센터
Clean Technology, Vol.14, No.1, 53-60, March, 2008
수평평활 세관 내에서의 R-290, R-600a, R-22의 응축열전달과 압력강하 특성
Condensation Heat Transfer Characteristics and Pressure Drop of R-290, R-600a, and R-22 in Horizontal Smooth Pipes with a Small Diameter
E-mail:
초록
본 연구에서는 내경이 각각 5.80 mm와 10.07 mm인 두 개의 수평 이중관열교환기 내에서의 탄화수소계 냉매의 응축열전달과 압력강하에 대한 실험을 35.5~210.4 kg/m2ㆍs의 질량유속과 응축온도인 40℃에서 수행하였다. 탄화수소계 냉매 R-290과 R-600a의 응축열전달계수가 프레온계 냉매인 R-22보다 높았다. 응축 압력강하는 R-600a > R-290 > R-22 순으로 나타났고, 내경이 5.8 mm인 관 내 보다 10.07 mm인 관 내의 압력강하가 R-600a에서는 6~15% 정도 높았으며, R-290과 R-22에서는 각각 9.8~12.5%와 2.1~4.6%정도 높게 나타났다. 실험으로 구한 응축열전달계수와 종래의 상관관계식을 비교해 본 결과, 모든 관경에 대해 Haraguchi 등의 상관관계식과 가장 좋은 일치를 보였다.
The condensation heat transfer coefficients and pressure drops of hydrocarbon refrigerants (R-290 and R-600a) and hydrochlorofluorocarbon (HCFC) refrigerants were measured in the two horizontal double pipe heat exchangers with inner diameters of 10.07 mm and 5.80 mm at a mass flux of 35.5~210.4 kg/m2s and the condensation temperature of 40 ℃. The average condensation heat transfer coefficients of hydrocarbon refrigerants were higher than that of HCFC refrigerant(R-22). The pressure drop had a magnitude in the order of R-600a > R-290 > R-22. The pressure drops in the tubes with inner diameter of 10.07 mm were approximately 6~15%, 9.8~12.5% and 2.1~4.6% higher for R-600a, R-290 and R-22, respectively, than those with inner diameter of 5.80 mm. The condensation heat transfer coefficients were compared with the published experimental data, and showed the best agreement with Haraguchi et al.'s correlation.
  1. Baker O, Oil Gas J., 185 (1954)
  2. Mandhane JM, Int. J. Multiph. Flow, 1, 537 (1974)
  3. Hewitt GF, Measurements of Two Phase Flow Parameters, Academic Press, London (1978)
  4. Taitel Y, Dukler AE, AIChE J., 47 (1976)
  5. Lee HS, Seong GH, Phan Thanh Tong, Yoon JI, International Journal of Air-Conditioning and Refrigeration, 18(2), 977 (2006)
  6. Kim NH, Cho CH, Kim CO, Kim MH, Yoon CH, Korean J. Air-Cond. Refrig. Eng., 10(3), 271 (1998)
  7. Haraguchi E, Koyama H, Fujii H, Trans. JSME, 60(574), 2117 (1994)
  8. Shah MM, Int. J. Heat Mass Transf., 22, 547 (1979)
  9. Cavallini A, Zecchin R, Proc. 6th Int. Heat Trans. Conf., Tokyo, 3, 157 (1974)
  10. Traviss DP, Rohsenow WM, Baron AB, ASHRAE Trans., 79, 157 (1972)
  11. Dobson MK, Chato JC, Hinde DK, Wang SP, ASHRAE Trans., 744 (1994)