Korean Chemical Engineering Research, Vol.46, No.3, 498-505, June, 2008
망간촉매하에서 암모니아의 선택적 산화반응
Selective Catalytic Oxidation of Ammonia in the Presence of Manganese Catalysts
E-mail:
초록
천연망간광석과 천연망간광석에 금속산화물을 Al2O3와 TiO2에 담지한 촉매을 이용하여 저온 선택적 산화 반응에 대하여 연구하였다. 망간계 금속산화물은 낮은 온도에서 우수한 암모니아 전환율을 나타내었다. NMO 존재하의 저온에서의 O2와 NH3의 흡착 활성화에너지는 각각 10.5와 22.7 kcal/mol 임을 밝혔다. 망간광석에 미량의 Ag를 함침함으로써 활성온도를 크게 낮출 수 있었다. 티타니아 담체의 경우 저온활성이 우수하게 나타나는 특성을 보였다. 또한 구리와 망간을 사용하면 망간을 단독으로 사용한 경우보다는 저온의 활성이 우수하게 나타난다. 망간이 5 wt.% 이상에서는 동일한 전환율을 나타내고 있으며, 저온 활성이 15 wt.%까지 약간 증가함을 알 수 있으며, 20 wt.%에서는 오히려 감소하는 것으로 나타나 있다. 황산화물의 피독실험 결과 본 연구에서는 최종적으로 망간에 조촉매의 첨가에 의한 내피독성의 향상은 공정의 복잡성과 비용면에서 망간의 단독 사용보다 낮게 나타났다.
The selective catalytic oxidation of ammonia was carried out in the presence of natural manganese ore (NMO) and manganese as catalysts using a homemade 1/4" reactor at 10,000 hr-1 of space velocity. The inlet ammonia concentration was maintained at 2,000 ppm, with an air balance. The manganese catalyst resulted in a substantial ammonia conversion, with adsorption activation energies of oxygen and ammonia of 10.5 and 22.7 kcal/mol, respectively. Both T50 and T90, defined as the temperatures where 50% and 90% of ammonia, respectively, are converted, decreased significantly when alumina-supported manganese catalyst was applied. Increasing the manganese weight percent by 15 wt% increased the lower temperature activity, but 20 wt% of manganese had an adverse effect on the reaction results. An important finding of the study was that the manganese catalyst benefits from a strong sulfur tolerance in the conversion of ammonia to nitrogen.
- Yokozeki A, Shiflett MB, Appl. Energy, 84(12), 1258 (2007)
- Zanoelo EF, Meleiro LAC, Chem. Eng. Sci., 62(23), 6851 (2007)
- Lee JY, Kim SB, Hong SC, Chemosphere, 50(8), 1115 (2003)
- Miladinovic N, Weatherley LR, Chem. Eng. J., 135(1-2), 15 (2008)
- Chmielarz L, Kustrowski P, Dziembaj R, Cool P, Vansant EF, Catal. Today, 119(1-4), 181 (2007)
- Bosch H, Janssen F, Catal. Today, 2(4), 381 (1988)
- Ramis G, Yi C, Busca G, Turco M, Kotur E, Willy RJ, J. Catal., 157(2), 523 (1995)
- Zhu ZP, Liu ZY, Liu SJ, Niu HX, Appl. Catal. B: Environ., 30(3-4), 267 (2001)
- Li YJ, Armor JN, Appl. Catal. B: Environ., 13(2), 131 (1997)
- Kim SS, Hong SC, J. Korean Ind. Eng. Chem., 18(3), 255 (2007)
- Yamashita T, Vannice A, Appl. Catal. B: Environ., 13(2), 141 (1997)
- Singoredjo L, Korver R, Kapreijn F, Moulijn JA, Appl. Catal. B: Environ., 1(4), 297 (1992)
- Jang HT, Park Y, Ko YS, to be submitted (2008)
- Baller JC, Emeleus HJ, Nyholm RS, Trotman-Dickenson AF, vol.3, Pergamon Press, 771 (1976)
- Kapteijn F, Vanlangeveld AD, Moulijn JA, Andreini A, Vuurman MA, Turek AM, Jehng JM, Wachs IE, J. Catal., 150(1), 94 (1994)
- Lietti L, Forzatti P, Berti F, Catal. Lett., 41(1-2), 35 (1996)
- U.S. Patent 5759948, June, 2 (1998)
- Lefers JB, Lodder P, Eur. Patent 427344 (1991)
- Greenwood NN, Earnshaw A, Chemistry of the Elements, Pergamon Press, UK (1984)
- Hong SC, Korean Chem. Eng. Res., 43(2), 278 (2005)