화학공학소재연구정보센터
Polymer(Korea), Vol.32, No.2, 138-142, March, 2008
테오필린 분자 날인 고분자의 합성 및 특성
Synthesis and Characterization of Theophylline Molecularly Imprinted Polymers
E-mail:
초록
분자 날인 기술은 표적 분자에 대해 높은 선택도를 갖는 합성 재료를 제조하기 위한 효과적인 방법이다. 본 연구에서는 주형 분자로 테오필린(theophylline)을, 가교제로 폴리에스터-아크릴레이트 수지를 사용하여 UV 중합을 통해 분자 날인 고분자(MIP)를 합성하였다. 기능성 단량체 종류가 MIP의 성능에 미치는 영향을 알아보기 위해, 메타크릴산(mathacrylic acid), 아크릴산(acrylic acid), 그리고 아크릴 아미드(acrylic amide)를 기능성 단량체로 각각 사용하여 MIP를 합성하였다. MIP는 비날인 고분자(NIP)보다 테오필린에 대해 훨씬 더 높은 재결합 능력을 보였다. 메타크릴산을 사용하여 합성한 MIP는 가장 높은 재결합 능력을 보였다. MIP의 선택도는 테오필린과 분자구조가 유사한 카페인(caffeine) 용액을 사용하여 조사하였다. 클로로포름보다 극성인 증류수를 용매로 사용하였을 경우 MIP의 테오필린 재결합 성능은 감소하였다.
Molecularly imprinting technology is an effective method to prepare a synthetic material with a high selectivity to a target molecule. In this study, a molecularly imprinted polymer (MIP) was synthesized via UV-polymerization using theophylline and UV-curable polyester-acrylate resin as a template molecule and a crosslinker, respectively. To elucidate the effects of functional monomer type on the performance of the MIP, each MIP was synthesized using mathacrylic acid, acrylic acid, and acryl amide as functional monomers. Each MIP showed higher rebinding capacity to theophylline than its corresponding non-imprinted polymer (NIP). The MIP synthesized using mathacrylic acid as a functional monomer showed the highest rebinding capacity to theophylline. The selectivity of the MIP was investigated using a solution with caffeine having a very similar structure to theophylline. The binding performance of the MIP to theophylline decreased when distilled water was used as a solvent, which has more polarity than chloroform.
  1. Ye L, Mosbach K, React. Funct. Polym., 48, 149 (2001)
  2. Wulff G, Chem. Rev., 102, 1 (2002)
  3. Cormack PAG, Elorza AZ, J. Chromatogr. B, 804, 173 (2004)
  4. Shea K, J. Trends Polym. Sci., 2, 166 (1994)
  5. Cheong SH, Oh CY, Seo JI, Par JK, Korean J. Biotechnol. Bioeng., 16, 115 (2001)
  6. Wulff G, Sarhan A, Angew. Chem.-Int. Edit., 11, 341 (1972)
  7. Caro E, Marce RM, Borrull F, Cormack PAG, Sherrington DC, Trends Anal. Chem., 25, 143 (2006)
  8. Andersson LI, J. Chromatogr. B, 745, 3 (2000)
  9. Yu C, Mosbach K, J. Chromatogr. A, 888, 63 (2000)
  10. Faihurst RE, Chassaing C, Venn RF, Mayes AG, Biosens. Bioelectron., 20, 1098 (2004)
  11. Liu ZS, Wu YL, Yan C, Gao RY, Anal. Chim. Acta, 523, 243 (2004)
  12. Nilsson J, Spege P, Nilsson S, J. Chromatogr. B, 804, 3 (2004)
  13. Chen X, Yia C, Yan XQ, Wang XR, J. Chromatogr. B, 812, 149 (2004)
  14. Kugimiya A, Takeuchi T, Anal. Chim. Acta, 395, 251 (1999)
  15. Blomgre A, Berggren C, Holmberg A, Larsson F, Sellergre B, Ensing K, J. Chromatogr. A, 975, 157 (2002)
  16. Yano K, Karube I, Trends in Anal. Chem., 18, 199 (1999)
  17. Snowden TS, Anslyn EV, Curr. Opin. Chem. Biol., 3, 740 (1999)
  18. Park JK, Khan H, Lee W, Enzyme Microb. Technol., 35(6-7), 688 (2004)
  19. Allender CJ, Brain KR, Ballatore C, Cahardc D, Siddiqui A, McGuigan C, Anal. Chim. Acta, 435, 107 (2001)
  20. Lu Y, Li CX, Zhang HS, Liu XH, Anal. Chim. Acta, 489, 33 (2003)
  21. Wistuba D, Schurig V, J. Chromatogr. A, 875, 255 (2000)
  22. Ulbricht M, J. Chromatogr. B, 804, 113 (2004)
  23. Kriz D, Mosbach K, Anal. Chim. Acta, 300, 71 (1994)
  24. Piletsky SA, Piletska EV, Bossi A, Karim K, Lowe P, Turner APF, Biosens. Bioelectron., 16, 701 (2001)
  25. Karim K, Breton F, Rouillon R, Piletska EV, Guerreiro A, Chianella I, Piletsky SA, Adv. Drug Deliv. Rev., 57, 1795 (2005)
  26. Tunc Y, Hasirci N, Yesilada A, Ulubayram K, Polymer, 47(20), 6931 (2006)
  27. Kim SH, Lee KS, Kim YH, Choi WJ, Kim BS, Kim EK, Kim DS, Polym.(Korea), 31(2), 153 (2007)
  28. Andersson LI, J. Chromatogr. B, 739, 163 (2000)
  29. Dong W, Yan M, Liu Z, Wu G, Li Y, Sep. Purif. Technol., 53, 183 (2007)
  30. Mullett WM, Lai EPC, Microchem. J., 61, 143 (1999)
  31. Spivak D, Gilmore MA, Shea KJ, J. Am. Chem. Soc., 119(19), 4388 (1997)