Electrophoresis, Vol.28, No.24, 4765-4768, 2007
Faster and improved microchip electrophoresis using a capillary bundle
Joule heating generated in CE microchips is known to affect temperature gradient, electrophoretic mobility, diffusion of analytes, and ultimately the efficiency and reproducibility of the separation. One way of reducing the effect of joule heating is to decrease the cross-section area of microchannels. Currently, due to the limit of fabrication technique and detection apparatus, the typical dimensions of CE microchannels are in the range of 50-200 mu m. In this paper, we propose a novel approach of performing microchip CE in a bundle of extremely narrow channels by using photonic crystal fiber (PCF) as separation column. The PCF was simply encapsulated in a poly(methyl methacrylate) (PMMA) microchannel right after a T-shaped injector. CE was simultaneously but independently carried out in 54 narrow capillaries, each capillary with diameter of 3.7 mu m. The capillary bundle could sustain high electric field strength up to 1000 V/cm due to efficient heat dissipation, thus faster and enhanced separation was attained.