Industrial & Engineering Chemistry Research, Vol.46, No.25, 8566-8573, 2007
Direct oxidation of hydrogen to hydrogen peroxide over Pd (or PdO)/Al2O3 in aqueous reaction medium: Influence of different acids and halide anions in reaction medium on formation and destruction of H2O2
Effects of different mineral acids (viz. H2SO4, H3PO4, HNO3, HCl, HBr, and HI), acid (H3PO4) concentration, different halide anions (viz. F-, Cl-, Br-, and I-), and halide anion concentration in aqueous reaction medium on the H2O2 formation (in H-2-to-H2O2 oxidation) and/or on the H2O2 destruction (by H2O2 decomposition and hydrogenation) activities of Pd (or PdO)/Al2O3 catalyst (at 300 K and atmospheric pressure) have been thoroughly investigated. Among the different halide anions, Br-anions are most effective for promoting the H2O2 formation and inhibiting the H2O2 destruction by both the H2O2 decomposition and/or hydrogenation. The cations associated with the halide anions, however, have only a little or no influence on both the H2O2 formation and destruction. The concentration of the different halide anions has a strong influence on the H-2 conversion and H2O2 formation and destruction activities of the Pd/Al2O3. The H2O2 formation activity in the presence of Br- or Cl- anions is highest at the optimum concentration of halide (about 1.0 mmol/dm(3)). it is also highest at the optimum concentration of phosphoric acid (between 0.1 and 0.3 mol/dm(3)). In general, the H2O2 formation is increased with decreasing the H2O2 destruction activity of the catalyst, indicating a close relationship between the two. Br- anions act as an excellent catalyst promoter for Pd/Al2O3 catalyst, but they show only a small promoting effect for PdO/Al2O3 catalyst. The next choice for halide promoter for Pd/Al2O3 catalyst is Cl- anions. F- and I- anions are, however, catalyst inhibitor and strong poison, respectively, for the H2O2 formation. At the same concentration, Br- anions are more effective than Cl- anions for inhibiting the H2O2 destruction reactions over Pd/Al2O3 Catalyst. For both halide promoters (Cl- and Br-), the net H2O2 formation is controlled by the H2O2 hydrogenation rather than by the H2O2 decomposition.