화학공학소재연구정보센터
Polymer(Korea), Vol.20, No.2, 182-190, March, 1996
주사슬에 실페닐렌-실록산기를 갖는 새로운 방향족 폴리아미드의 합성과 물성
Synthesis and Characterizations of New Aromatic Polyimides Containing Silphenylene-Siloxane Moieties in the Main Chain
초록
주사슬에 실리콘을 함유하는 새로운 방향족 폴리아미드 (PIM, PIP시리즈)를 실페닐렌-실록산기를 갖는 단량체인 1,3-bis(m-aminophenyl)-1,1,3,3-tetramethyldisiloxane(DMDA) 또는 1,3-bis(p-isocyanatophenyl)-1,1,3,3-tetramethyldisiloxane (DMIS)과 스피로아세탈 및 다양한 방향족 단량체와의 축합중합에 의하여 합성하였다. 이들 중합체들의 구조는 FT-IR, 1H-NMR, 원소분석 그리고 WAXD로 확인하였으며 열적성질 및 열안정성은 DSC와 TGA로 측정하였다. PIM 및 PP시리즈의 중합체들은 용액점성도가 0.25-0.41 dL/g의 범위였으며, DMF, DMAc, DMSO, NMP같은 유기용매에 쉽게 용해되는 성질을 보여주었으며 제조된 중합체의 Tg와 Tm은 각각 100-170℃ 및 245-315℃였다. 또 TGA에 의해 확인된 중합체의 IDT와 T10은 질소 분위기하에서 각각 290-400℃ 및 312-415℃였다. 이들 두 시리즈는 X-선 분석 결과 모두 반결정형의 구조를 갖는 것으로 판명되었다.
New aromatic polyimides (PIM and PIP series) having silicone moieties in the main chain were prepared by the polycondensation reaction of meta- and para-oriented silphenylene/siloxane containing monomers with spiroacetal and other aromatic monomers. The monomers employed were 1,3-bis(m-aminophenyl)-1,1,3,3-tetramethyldisiloxane(DMDA) and 1,3-bis-(p-isocyanatophenyl)-1,1,3,3-tetra-methyldisiloxane (DMIS). The structures and thermal properties of these polymers were determined by FT-IR, 1H-NMR, elemental analysis, WAXD, DSC, and TGA. PIM and PIP series of polymers had inherent viscosities in he range of 0.25-0.41 dL/g. They were readily soluble in various organic polar solvents such DMF, DMAc, and NMP. The Tg and Tm of these Polymers were detected over the temperature range of 100-170℃ and 245-315℃, respectively, according to their DSC traces. The thermal stabilitles of these polymers were also evaluated by TGA, which showed that their IDT and T10 were in the range of 290-400℃ and 312-415℃, respectively, under the nitrogen atmosphere. WAXD patterns of PIM and PIP series showed that their structures were semi crystalline.
  1. Brydson JA, "Plastic Materials," 5th Ed., Butterworths, London (1989)
  2. Cassidy PE, J. Macromol. Sci.-Chem., A15, 1435 (1981)
  3. Seymour RB, Kirshenbaum GS, "High Performance Polymers: Their Origin and Development," Elsevier, New York (1986)
  4. Kaito A, Kyptani M, Nakayama K, Macromolecules, 24, 3244 (1991) 
  5. Frosini A, Levita G, J. Polym. Sci. B: Polym. Phys., 15, 239 (1977)
  6. Krigbaum WR, Hakami H, Kotek R, Macromolecules, 18, 965 (1985) 
  7. Jin JI, Lee SH, Park HJ, Polym. Bull., 19, 20 (1988)
  8. Lee SM, Kim KS, Kim JY, J. Sci. Res. Inst. Han Nam Univ., 25, 129 (1995)
  9. Lee SM, Kim KS, Lee KS, Lee SK, Polym.(Korea), 13(10), 888 (1989)
  10. Lee SM, Cheong JH, Kim KS, Lee KS, Polym.(Korea), 17(4), 463 (1993)
  11. Kim KS, Lee SM, Ryu KC, Lee KS, Polym. Bull., 35(1-2), 57 (1995) 
  12. Ghatge ND, Jadhav JY, J. Polym. Sci. A: Polym. Chem., 21, 3055 (1983)
  13. Thames SF, Melone KG, J. Polym. Sci. A: Polym. Chem., 31, 521 (1993) 
  14. Pauling L, "The Nature of Chemical Bond," 3rd Ed., p. 85, 189, Cornell Univ. Press, Ithaca, New York (1960)
  15. Perrin DD, Armarego WLF, "Purification of Laboratory Chemicals," 3rd Ed., Pergamon Press, New York (1988)
  16. Ghatge ND, Mohite SS, Polyhedron, 6, 435 (1987) 
  17. Bonnet JC, Marechai E, Bull. Soc. Chim. Fr., 9, 3561 (1972)
  18. Herz R, Chem. Ber., 23, 2537 (1980)