화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.149, No.1, 234-237, 2007
Differential effect of arecoline on the endogenous dioxin-responsive cytochrome P450 1A1 and on a stably transfected dioxin-responsive element-driven reporter in human hepatoma cells
Dioxin-responsive element-mediated chemical activated luciferase expression (DRE-CALUX) is one of alternative bioassays for the determination of dioxin levels. We have previously established a DRE-CALUX cell line, Huh7-DRE-Luc, by using stable transfection of Huh-7 cells with a reporter plasmid (4xDRE-TATA-Luc) carrying a DRE-driven firefly luciferase gene. It was also shown that arecoline, a major areca nut alkaloid, inhibited the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced cytochrome P450 1A1 (CYP1A1) activation in Huh-7 cells. The TCDD-activated aryl hydrocarbon receptor (AhR) induces the DRE-CALUX activation and CYP1A1 gene expression via binding to DRE in promoter regions of these dioxin-responsive genes. In the present study, the effect of arecoline on the TCDD-induced activation of DRE-CALUX and CYP1A1 enzyme in Huh7-DRE-Luc and Huh-7 cells, respectively, was examined. It was found that arecoline inhibited TCDD-induced CYP1A1 activation and however enhanced TCDD-induced DRE-CALUX activation. This finding indicates the differential effect of arecoline on the endogenous dioxin-responsive CYP1A1 and on a stably transfected DRE-driven reporter in human hepatoma cells. The present study suggests that induction of DRE-CALUX alone does not necessarily parallel with endogenous CYP1A1 gene expression, and that the reporter assay may detect interactions that are not functional in endogenous gene. (c) 2007 Elsevier B.V. All rights reserved.