Journal of the American Chemical Society, Vol.129, No.30, 9446-9451, 2007
Depth profiling of water molecules at the liquid-liquid interface using a combined surface vibrational spectroscopy and molecular dynamics approach
The studies presented here combine experimental and computational approaches to provide new insights into how water structures and penetrates into the organic phase at two different liquid-liquid systems: the interfaces of carbon tetrachloride-water (CCl4-H2O) and 1,2-dichloroethane-water (DCE-H2O). In particular, molecular dynamics simulations are performed to generate computational spectral intensities of the CCl4-H2O and DCE-H2O interfaces that are directly comparable with experimental measurements. These simulations are then applied toward the generation of spectral profiles, responses that vary as functions of both frequency and interfacial depth. These studies emphasize the similarities and differences in the structure, orientation, and bonding of interfacial water as a function of interfacial depth for these two liquid-liquid systems and demonstrate the differing behavior of water monomers that penetrate into the organic phase.