화학공학소재연구정보센터
Chemical Engineering Communications, Vol.195, No.5, 492-510, 2008
The modified pgr equation of state: Asymmetric mixture VLE representations and predictions
A set of mixing rules was proposed for the modified Park-Gasem-Robinson (PGR) equation of state (EOS) to extend its predictions to mixtures. The phase behavior predictive capability of this segment-segment interaction model was evaluated for selected binary asymmetric mixtures involving ethane, carbon dioxide, and hydrogen in normal paraffins. The predicted bubble point pressures for the ethane + n-paraffin and carbon dioxide+n-paraffin binaries were compared to those of the Peng-Robinson (PR), simplified perturbed hard-chain theory (SPHCT), and original PGR equations. The a priori predictive capability of the modified PGR EOS is significantly better than that of the PR, SPHCT, and original PGR equations of state for ethane binaries with absolute-average percent deviation (%AAD) of 5%. However, this EOS produces comparable representations for ethane binaries (%AAD of 1.9%) and carbon dioxide binaries (%AAD of 2.0). For hydrogen binaries, the modified PGR EOS showed much better representations (%AAD of 1.7) than the original PGR equation and was comparable to the PR equation.