화학공학소재연구정보센터
Applied Surface Science, Vol.254, No.4, 1042-1047, 2007
Experimental analysis of the production of micro- and nanofibres by Laser Spinning
Laser Spinning is a new technique for the production of glass fibres with diameters in the nanometre to micrometre scale. It allows large quantities of nanofibres to be made with specific, controllable chemical compositions. Furthermore, the production of amorphous micro-and nanofibres of non-ready glass former materials was demonstrated. All these novel characteristics will potentially open up a whole new range of applications for the fibres. In this technique a high power laser is employed to melt the precursor solid material, while a supersonic gas jet is injected into the melt volume. The melt forms glass fibres as a result of its viscous elongation and cooling by the drag force and convective heat transfer produced by the gas jet. The influence of several operating conditions controlling the morphology, composition, and diameter distribution of the fibres is experimentally assessed by means of electron microscopy analysis, X-ray fluorescence and time-of-flight secondary ion mass spectrometry. The experimental results are discussed based on a theoretical explanation of the process of fibre formation. This leads ultimately to the deduction of a set of rules regarding the influence of the factors studied on the production of nanofibres by Laser Spinning. (c) 2007 Elsevier B.V. All rights reserved.