화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.77, No.6, 1241-1250, 2008
Novel peroxidases of Marasmius scorodonius degrade beta-carotene
Two extracellular enzymes (MsP1 and MsP2) capable of efficient beta-carotene degradation were purified from culture supernatants of the basidiomycete Marasmius scorodonius (garlic mushroom). Under native conditions, the enzymes exhibited molecular masses of similar to 150 and similar to 120 kDa, respectively. SDS-PAGE and mass spectrometric data suggested a composition of two identical subunits for both enzymes. Biochemical characterisation of the purified proteins showed isoelectric points of 3.7 and 3.5, and the presence of heme groups in the active enzymes. Partial amino acid sequences were derived from N-terminal Edman degradation and from mass spectrometric ab initio sequencing of internal peptides. cDNAs of 1,604 to 1,923 bp, containing open reading frames (ORF) of 508 to 513 amino acids, respectively, were cloned from a cDNA library of M. scorodonius. These data suggest glycosylation degrees of similar to 23% for MsP1 and 8% for MsP2. Databank homology searches revealed sequence homologies of MsP1 and MsP2 to unusual peroxidases of the fungi Thanatephorus cucumeris (DyP) and Termitomyces albuminosus (TAP).