화학공학소재연구정보센터
Polymer(Korea), Vol.19, No.2, 179-186, March, 1995
Poly(p-Phenylene terephthalamide)/Polyimide 분자복합체의 제조와 물성
Preparation and Properties of Poly-(p-phenylene terephthalamide)/Polyimide Molecular Composite
초록
폴리이미드(PI) 기질의 poly(p-phenylene terephthalamide)(PPTA) 겔 군산 복합체를 제조하여 역학적 물성을 조사하였다. 강직한 액정 고분자인 PPTA가 폴리이미드 기질에 효과적으로 분산된 복합체는 1% 내외의 액정고분자 혼입만으로도 현저한 탄성률 증가를 나타내고 있다. 이러한 현상을 격자모델에 의해 검토하였으며, 광학 현미경, 주사 전자 현미경(SEM), 인장 시험기를 이용하여 구조 물성관계를 조사하였다. SEM의 관찰 결과 PPTA가 기질에 미세하게 분산되어 있음을 알 수 있었고, 편광 현미경의 관찰 결과로서 보강제로 첨가된 PPTA는 복합체의 이미드화 진행과 더불어 결정성 증가를 보이고 있다. 이러한 결과로부터 본 연구의 PI/PPTA복합체는 소량의 강화제 첨가로도 현저한 기계적 물성 향상이 가능한 분자 복합체의 형태를 갖고 있으며, 기질내 PPTA자체의 탄성률도 단결정화된 PPTA의 이론값에 접근함을 보이고 있다
Polyimide (Pl) composites dispersed with poly(p-phenylene terephthalamide) (PPTA) gel were prepared and the mechanical properties of the composites were investigated. The modulus of composite, where the PPTA as a liquid crystalline polymer was finely dispersed in the PI matrix, was increased remarkably even with the incorporation of PPTA of about 1 wt%. In order to interpret these phenomena, a lattlce model was applied and the relationships between structures and properties were analyzed by optical microscopy, scanning electron microscopy (SEM), tensile tester. The fine dispersions of PPTA in PI matrix phase were observed in the micrographs of SEM. The polarized optical microscopic images observed from stepwise imidization showed the crystallinity of PPTA dispersed in PI matrix to become higher during the imidization. It was concluded that PI/PPTA composites prepared in this work almost approach the molecular composite system which has a extreme reinforcement potential, and that the estimated modulus of a PPTA single itself in the matrix is considered to approach the theoretical modulus of a PPTA single crystallite.
  1. Hwang WF, Wiff DR, Verschoore C, Price GE, Helminiak TE, Adams WW, Polym. Eng. Sci., 23, 784 (1983) 
  2. Hwang WF, Wiff DR, Benner CL, Helminiak TE, J. Macromol. Sci.-Phys., B2(2), 231 (1983)
  3. Husman G, Helminiak T, Adams W, Wiff D, Benner C, "Resins for Aerospace," ACS Symp. Ser., 132, C.A. May, Eds., pp. 203-214, Am. Chem. Soc. Washington, D.C. (1980)
  4. Takayanagi M, Pure Appl. Chem., 55, 819 (1983)
  5. Ueta S, Sakamoto T, Takayanagi M, J. Polym. Sci., 25, 31 (1993)
  6. Takayanagi M, Ogata T, Morikawa M, Kai T, J. Macromol. Sci.-Phys., B17(4), 591 (1980)
  7. Yamada K, Uchida M, Takayanagi M, J. Appl. Polym. Sci., 32, 5231 (1986) 
  8. Takayanagi M, Goto K, Polym. Bull., 13, 35 (1985)
  9. Morgan RJ, J. Polym. Sci. B: Polym. Phys., 21, 1757 (1983)
  10. Bair TI, Morgan PW, Killian FL, Macromolecules, 10, 1396 (1977) 
  11. Mere H, Nayakawa Y, Yamaguchi M, Ohno M, U.S. Patent, 4,172,938 (1979)
  12. Higashi F, Ogata S, Aoki Y, J. Polym. Sci. A: Polym. Chem., 20, 2081 (1982)
  13. Edward WN, U.S. Patent, 3,179,514 (1963)
  14. Endrey AI, U.S. Patent, 3,179,633 (1965)
  15. Lewin M, Preston J, "High Technology Fibers," Vol. 2, Part C, p. 376, Marcel Dekker, New York (1983)
  16. Tashiro K, Kobayashi M, Tadokoro H, Macromolecules, 10(2), 413 (1977)
  17. Yamada T, Mitsutake T, Takayanagi M, Kasiyama T, J. Macromol. Sci.-Chem., A26, 891 (1989)
  18. Endrey AI, U.S. Patent, 3,179,631 (1965)