Biomacromolecules, Vol.8, No.10, 3015-3024, 2007
Molecular modeling of conformational properties of oligodepsipeptides
A depsipeptide is a chemical structure consisting of both ester and amide bonds. Quantum mechanics calculations have been performed to investigate the conformational properties of a depsidipeptide in the gas and solution phases. Similar to an alanine dipeptide, the depsidipeptide exhibits a strong preference for the polyproline 11 (PPII) helical conformation. Meanwhile, due to the changes in the intramolecular interaction, the propensity for beta-sheets and alpha-helices diminishes while an unusual inclination for the (phi,psi) = (-150 degrees,0 degrees) conformation was observed. A molecular mechanics model has been developed for polydepsipeptides based on the quantum mechanical study. Both simulated annealing and replica exchange molecular dynamics simulations have been carried out on oligodepsipeptide sequences with alternating depsi and natural residues in solution. Novel helical structures have been indicated from the simulations. When glycine is used as the alternating natural amino acid residue, the PPII conformation of a depsi residue stabilizes the peptide into a right-handed helical structure while the cc-helical conformation of the depsi residue favors an overall left-handed helical structure. The free energy analysis indicates that both the left- and the right-handed helices are equally likely to exist. When charged lysine is introduced as the alternating natural residue, however, it is found that the depsipeptide sequence prefers an extended conformation as in PPII Our results indicate that the depsipeptide is potentially useful in designing protein mimetics with controllable structure, function, and chemistry.