화학공학소재연구정보센터
Polymer(Korea), Vol.19, No.1, 1-10, January, 1995
4급 암모늄 상이동 촉매에 의한 Acrylonitrile의 라디칼 중합
Radical Polymerization of Acrylonitrile with Phase-Transfer Catalyst, Quaternary Ammonium Chloride
초록
Na2S2O4 수용액과 CCl4-toluene 용액의 2상에서 유기상에 용해하는 tricaprylmethylammonium chloride 와 tetrabutylammonium chloride 상이동 촉매를 사용하여 단량체인 acrylonitrile (AN) 의 라디칼 중합반응에서 초기중합속도를 측정하여, 액-액 불균일계 접촉계면을 통한 중합반응기구를 해석하였다. AN의 중합속도는 수용액상에 존재하는 Q+ 이온의 농도와 S2O4-2 이온의 농도가 결합된 항에 정비례하고, CCl4 농도의 제곱근과 AN의 농도에 각각 정비례하였다. 재래적인 개시제를 사용한 라디칼 중합반응기구에 상이동 촉매에 의한 반응기구를 적용한 액-액 불균일 2상계에서 AN의 중합반응속도식을 제시하였다.
The radical polymerization of acrylonitrile was investigated in a Na2S2O4 aqueous and CCl4-toluene organic two-phase solution system using phase-transfer catalysts such as tricaprylmethylammonium chloride and tetrabutyl-ammonium chloride. The observed initial rates of polymerization were compared with those obtained from the polymerization mechanism proposed with a cyclic phase-transfer initiation step. The rate of polymerization was found to be proportional to the combined term of concentration of Q+ and of S2O4-2 in the aqueous solution, the square root concentration of CCl4, and concentration of monomer. The rate of polymerization of acrylonitrile in the liquid-liquid heterogeneous system was presented with the polymerization mechanism by phase- transfer catalysts applied to that by conventional initiators.
  1. Weber WP, Gokel GW, "Phase Transfer Catalysis in Organic Synthesis," Springer-Verlag, New York (1977)
  2. Starks CM, Liotta C, "Phase Transfer Catalysis-Principle and Techniques," Academic Press, New York (1978)
  3. Dehmolow EV, Dehmlow SS, "Phase Transfer Catalysis," 2nd Ed., Verlag Chemie, Weinheim (1983)
  4. Starks CM, "Phase-Transfer Catalysis, New Chemistry, Catalysis, and Applications," Am. Chem. Soc., Washington, D.C. (1987)
  5. Imai Y, Abe S, Ueda M, J. Polym. Sci. A: Polym. Chem., 19, 3285 (1981)
  6. Podkoscielny W, Kultys A, J. Appl. Polym. Sci., 26, 1143 (1981) 
  7. Yamazaki N, Imai Y, Polym. J., 15, 603 (1983) 
  8. Tsai H, Lee Y, J. Polym. Sci. A: Polym. Chem., 25, 1505 (1987) 
  9. Kellman R, Willians RF, Dimotsis G, Gerbi DJ, Willians JC, J. Am. Chem. Soc., 109, 128 (1987)
  10. Yamada B, Yasuda Y, Matsudita T, Otsu T, J. Polym. Sci. C: Polym. Lett., 14, 277 (1976)
  11. Reetz MT, Ostarek R, J. Chem. Soc.-Chem. Commun., 213 (1988)
  12. Rasmussen JK, Smith HK, J. Am. Chem. Soc., 103, 730 (1981) 
  13. Jayakrishnan A, Shah DO, J. Polym. Sci. A: Polym. Chem., 21, 3201 (1983)
  14. Jayakrishnan A, Shah DO, J. Appl. Polym. Sci., 29, 2937 (1984) 
  15. Rasmussen JK, Heilmann SM, Krepski LR, Smith HK, J. Am. Chem. Soc., 109, 116 (1987)
  16. Shimada S, Obata Y, Nakagawa K, Tabuchi K, Polym. J., 23, 305 (1991) 
  17. Tabuchi K, Sakota N, Polym. J., 15, 713 (1983) 
  18. Shimada S, Nakagawa K, Tabuchi K, Polym. J., 21, 275 (1989) 
  19. Shimada S, Obata Y, Nakagawa K, Tabuchi K, Polym. J., 22, 777 (1990) 
  20. Nishikubo N, Iizawa T, Kobayasi K, Masuda Y, Macromolecules, 16, 722 (1983) 
  21. Kondo S, Yasui H, Ohta K, Tsuda K, J. Chem. Soc.-Chem. Commun., 400 (1985)
  22. Nicholas PP, J. Am. Chem. Soc., 109, 155 (1987)
  23. Martinez G, Mijangos C, Terroba P, Millan J, J. Polym. Sci. A: Polym. Chem., 26, 1629 (1988) 
  24. Percec S, J. Appl. Polym. Sci., 36, 415 (1988) 
  25. Bulacovschi V, Mihailescu C, Ioan S, Simionescu BC, J. Macromol. Sci.-Chem., A28, 613 (1991)
  26. Shimada S, Obata Y, Nakagawa K, Tabuchi K, Polym. J., 23, 305 (1991) 
  27. Park SW, Moon JB, Park DW, Shin JH, HWAHAK KONGHAK, 30(5), 612 (1992)
  28. Park SW, Moon JB, Ha YS, Lim GT, Polym.(Korea), 17(1), 100 (1993)
  29. Park SW, Moon JB, Ha YS, Kim JH, J. Korean Ind. Eng. Chem., 4(2), 300 (1993)
  30. Flory PJ, "Principles of Polymer Chemistry," p. 106, Cornell University Press, London (1953)