화학공학소재연구정보센터
Chemical Engineering & Technology, Vol.30, No.9, 1262-1265, 2007
The effect of pulsed direct current field on the membrane flux of a new style of membrane Bioreactor
The effect of a pulsed direct current electric field on the membrane flux of an antifouling Membrane Bioreactor (MBR) designed and built in the laboratory was studied. The results showed that a pulsed direct current electric field had a significant effect on the membrane flux. The average membrane flux when using a pulse direct current electric field was between that of a steady electric field and that of no electric current under a trans-mernbrane pressure drop of Delta P = 0.1 MPa and a pulsed direct current electric field strength of 20 V/cm. There was an optimum value of pulse intensity and pulse duration for the membrane flux. The shorter the pulse interval time was, the higher the frequency of power-on, and the higher the average stable membrane flux of the MBR. This may have resulted from the fact that charged coarse particles and colloids account for 80 % of CODcr and BOD5 in urban domestic sewage. These particles and colloids moved away from the membrane surface at a certain electrical field strength, gradually thinning the particle sedimentary layer, reducing the membrane filtration resistance, and increasing the membrane flux significantly. However, the formation of a sedimentary layer on the membrane surface needed a significant amount of time and an appropriate pulse frequency while the MBR is powered on. This could save energy while keeping the membrane clean.