화학공학소재연구정보센터
Biotechnology Progress, Vol.23, No.5, 1124-1129, 2007
Preparation of a light-sensitive and reversible dissolution copolymer and its application in lysozyme purification
A novel light-sensitive and cation-exchange copolymer (P-NBCC) has been synthesized by random copolymerization of chlorophyllin sodium copper salt, crylic acid, n-butyl acrylate, and N-isopropylacrylamide. The PNBCC copolymer showed reversible dissolution and could be precipitated by 488 nm laser irradiation with the least light density of 1.70 x 10(5) W/m(2). By optimizing the ratio of monomers, pH, and ion concentration, over 95% copolymer was recovered by laser irradiation. The copolymer was used to purify lysozyme as light-sensitive cation exchanger, and its adsorption matched a Langmuir adsorption isotherm with maximum adsorption capacity of 98 900 U/g and dissociated constant of 852 U/mL. By applying the copolymer to the separation of lysozyme from egg white, the specific activity of lysozyme was improved from 399 to 6346 U/mg and the recovery of lysozyme achieved 81.3%.