화학공학소재연구정보센터
Applied Biochemistry and Biotechnology, Vol.143, No.2, 101-114, 2007
Inhibition kinetics of cabbage butterfly (Pieris rapae L.) larvae phenoloxidase activity by 3-hydroxy-4-methoxybenzaldehyde thiosemicarbazone
Phenoloxidase (PO) is a key enzyme in insect development, responsible for catalyzing the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the present study, the kinetic assay in air-saturated solutions and the kinetic behavior of PO from Pieris rapae (Lepidoptera) larvae in the oxidation of L-tyrosine (a monophenol) and L-DOPA (L-3, 4-dihydroxyphenylalanine) (a diphenol) was studied. The inhibitory effects of 3-hydroxy-4-methoxybenzaldehyde thiosemicarbazone (3-H-4-MBT) on the monophenolase and diphenolase activities of PO were also studied. The results show that 3-H-4-MBT can inhibit both the monophenolase and diphenolase activities of PO. The lag period of L-tyrosine oxidation catalyzed by the enzyme was obviously lengthened and the steady-state activities of the enzyme sharply decreased. The inhibitor was found to be noncompetitively reversible with a K-I (K-I = K-IS) of 0.30 mu mol/L and an estimated IC50 of 0.14 +/- 0.02 mu mol/L for monophenolase and 0.26 +/- 0.04 mu mol/L for diphenolase. In the time course of the oxidation of L-DOPA catalyzed by the enzyme in the presence of different concentrations of 3-H-4-MBT, the rate decreased with increasing time until a straight line was approached. The microscopic rate constants for the reaction of 3-H-4-MBT with the enzyme were determined.