화학공학소재연구정보센터
Journal of Polymer Science Part B: Polymer Physics, Vol.45, No.14, 1882-1897, 2007
The effect of nanoparticle shape on polymer-nanocomposite rheology and tensile strength
Nanoparticles can influence the properties of polymer materials by a variety of mechanisms. With fullerene, carbon nanotube, and clay or graphene sheet nanocomposites in mind, we investigate how particle shape influences the melt shear viscosity eta and the tensile strength tau, which we determine via molecular dynamics simulations. Our simulations of compact (icosahedral), tube or rod-like, and sheet-like model nanoparticles, all at a volume fraction phi approximate to 0.05, indicate an order of magnitude increase in the viscosity 17 relative to the pure melt. This finding evidently can not be explained by continuum hydrodynamics and we provide evidence that the eta increase in our model nanocomposites has its origin in chain bridging between the nanoparticles. We find that this increase is the largest for the rod-like nanoparticles and least for the sheet-like nanoparticles. Curiously, the enhancements of 17 and tau exhibit opposite trends with increasing chain length N and with particle shape anisotropy. Evidently, the concept of bridging chains alone cannot account for the increase in tau and we suggest that the deformability or flexibility of the sheet nanoparticles contributes to nanocomposite strength and toughness by reducing the relative value of the Poisson ratio of the composite. The molecular dynamics simulations in the present work focus on the reference case where the modification of the melt structure associated with glass-formation and entanglement interactions should not be an issue. Since many applications require good particle dispersion, we also focus on the case where the polymer-particle interactions favor nanoparticle dispersion. Our simulations point to a substantial contribution of nanoparticle shape to both mechanical and processing properties of polymer nanocomposites. (c) 2007 Wiley Periodicals, Inc.