화학공학소재연구정보센터
Journal of Polymer Science Part B: Polymer Physics, Vol.45, No.14, 1808-1820, 2007
Properties of a carbon filled cyclic olefin copolymer
This article investigates electrical conductivity and rheological aspects of cyclic olefin copolymer (COC) composites containing both carbon fiber (CF) and carbon black (CB) at various concentrations. The different formulations of carbon filled COC were compression molded in such a manner that the formed circular sheets exhibited preferred in-plane filler orientation. Through-plane and in-plane conductivity were measured by 2-probe and 4-probe methods, respectively, while an ARES rheometer in dynamic mode was employed to measure the storage modulus and complex viscosity. It was found that formulations with CF:CB ratios around 3 and where the CB content was close or below its critical percolation concentration resulted in higher electrical conductivity while maintaining the viscosity of the composite at a level acceptable for polymer processing machinery. For those composites containing both fillers, collaborative associations between the CB and CF fillers were found in the established percolating network structure, producing measured conductivities which exceeded the estimated values by the additive rule by up to sixfold. An empirical expression to handle hybrid filler systems is proposed in this work based on the standard percolation model. (c) 2007 Wiley Periodicals, Inc.