화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.111, No.36, 10736-10744, 2007
Performance evaluation of third-order thermodynamic perturbation theory and comparison with existing liquid state theories
To evaluate the performance of a recently proposed third-order thermodynamic perturbation theory (TPT), we employ the third TPT for calculation of thermodynamic properties such as compressibility factor, internal energy, excess chemical potential, gas-liquid coexistence curve, and critical properties of several fluids. By comparing the third-order TPT results with corresponding simulation data available in literature and supplied in the present report and theoretical results from several other theoretical approaches, one concludes that the third-order TPT is, in general, more accurate than other approaches such as Barker-Henderson second-order TPT using a macroscopic compressibility approximation (MCA-TPT), self-consistent Ornstein-Zernike approach, Monte Carlo perturbation theory, and a specially devised equation of state. Specifically, the third-order TPT can predict quantitatively a double critical phenomena of gas-liquid transition and a low-density liquid (LDL)-high-density liquid (HDL) transition associated with a soft core (SC) potential fluid very satisfactorily, but the predictions for the LDL-HDL transition based on the second-order MCA-TPT are quantitatively very bad or qualitatively incorrect. The failure of the second-order MCA-TPT for the SC fluid can be ascribed to the facts that for the SC potential the second-order and third-order terms of the perturbation expansion are not small quantities and that the second-order term is underestimated by the MCA. It is concluded that the present third-order version of the TPT is reliable for varying model fluids.