Journal of Physical Chemistry A, Vol.111, No.33, 8193-8201, 2007
On the structure and bonding of first row transition metal ozone carbonyl hydrides
Model complexes of the general form M(CO)(m)(H)(n)(O-3) (m = 1-5, n = 0 or 1) between ozone and the transition metals Ti to Cu were studied by density functional theory (DFT) calculations. The CDA charge decomposition method was used to analyze the interaction between the metal atom and the ozone ligand in terms of the traditional donation-back-donation mechanisms. Information about bond strengths was extracted from an analysis of the electron density in terms of the theory of atoms in molecules (AIM). The bonding in the ozone-metal complex was also studied within the NBO paradigm. Bond dissociation energies were calculated to be positive for all the complexes studied. Considering all the criteria employed in this study to analyze the interaction between the ozone and the transition metal, the Fe-complex is predicted to be the most stable, whereas the copper complex has the weakest metal-ozone interaction.