Journal of Physical Chemistry A, Vol.111, No.31, 7398-7403, 2007
Beam action spectroscopy via inelastic scattering
In this article, a new technique we call Beam Action Spectroscopy via Inelastic Scattering (BASIS) is demonstrated. BASIS takes advantage of the sensitivity of rotational state distributions in a supersonic molecular beam to inelastic scattering within the beam. We exploit BASIS to achieve increased sensitivity in two very different types of experiments. In the first, the UV photodissociation spectrum of OClO is recovered by monitoring intensity changes in the pure rotational transition of a spectator molecule (OCS) downstream from the nozzle, revealing a new vibrational structure in the region between 30 000 and 36 000 cm(-1). In the second, the mid-IR vibrational spectrum of acetylene is recorded simply by monitoring a single pure rotational transition of OCS co-expanded with acetylene. The technique may prove particularly fruitful when an excitation process produces product dark states that are not easily probed by conventional spectroscopy.