화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.111, No.26, 5839-5844, 2007
Radical cations of branched alkanes as observed in irradiated solutions by the method of time-resolved magnetic field effect
Spin dynamics in radical ion pairs formed under ionizing irradiation of n-hexane solutions of two branched alkanes 2,3-dimethylbutane and 2,2,4-trimethylpentane has been studied by the method of time-resolved magnetic field effect in recombination fluorescence. Experimental curves of the magnetic field effect are satisfactorily described by assuming that the spin dynamics is determined by the hyperfine interactions in the radical cation (RC) of branched alkane under study with hyperfine coupling (HFC) constants averaged by internal rotations of RC fragments. The HFC constants determined from the magnetic field effect curves are close to those estimated within DFT B3LYP approach. Analysis of the results indicates that at room temperature the lifetimes of the RC of the studied branched alkanes amount to, at least, tens of nanoseconds.