화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.111, No.25, 5441-5447, 2007
Resonance Raman de-enhancement caused by excited state mixed valence
Resonance Raman and absorption spectra of 9,10-bis(2-tert-butyl-2,3-diazabicyclo[2.2.2]oct-3-yl)-anthracene (2) are measured and analyzed. The contribution of the individual vibrational normal modes to the reorganization energy is investigated. Excited-state mixed valence in this system is analyzed using density functional theory electronic structure calculations. The resonance Raman excitation profiles exhibit a resonance de-enhancement effect around 20 725 cm(-1), but a corresponding feature is not observed in the absorption spectrum. This unusual observation is attributed to the presence of a dipole-forbidden, vibronically allowed component of the split mixed valence excited state. The de-enhancement dip is calculated quantitatively and explained in terms of the real and imaginary components of the polarizabilities of the two overlapping excited states.