화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.111, No.25, 5399-5407, 2007
Multiple-frequency EPR spectra of two aqueous Gd3+ polyamino polypyridine carboxylate complexes: A study of high field effects
In the search for highly efficient magnetic resonance imaging contrast agents, polyamino polypyridine carboxylate complexes of Gd3+ have shown unusual properties with both very rapid and very slow electron spin relaxation in solution observed by electron paramagnetic resonance. Since the relationship between the molecular structure and the electron spin properties remains quite obscure at this point, detailed studies of such complexes may offer useful clues for the design of Gd3+ compounds with tailored electronic features. Furthermore, the availability of very high-frequency EPR spectrometers based on quasi-optical components provides us with an opportunity to test the existing relaxation theories at increasingly high magnetic fields and observation frequencies. We present a detailed EPR study of two gadolinium polyamino polypyridine carboxylate complexes, [Gd(tpaen)](-) and [Gd(bpatcn)(H2O)], in liquid aqueous solutions at multiple temperatures and frequencies between 9.5 and 325 GHz. We analyze the results using the model of random zero-field splitting modulations through Brownian rotation and molecular deformations. We consider the effect of concentration on the line width, as well as the possible existence of an additional g-tensor modulation relaxation mechanism and its possible impact on future experiments. We use O-17 NMR to characterize the water exchange rate on [Gd(bpatcn)(H2O)] and find it to be slow (similar to 0.6 x 10(6) s(-1)).