화학공학소재연구정보센터
Polymer(Korea), Vol.18, No.4, 641-650, July, 1994
PVC-NBR 계를 이용한 고배율 발포체의 개발
Development of High Expansion Foam of PVC-NBR System
초록
PVC와 상용성을 갖는 것으로 알려진 NBR(butadiene acrylonitrile) 고무를 이용하여 고배율 PVC 발포체를 얻기 위한 연구를 수행하였다. 발포제, PVC/NBR 혼합비, 가교제 및 가교 촉진제, 그리고 가소제가 발포배율 및 cell상태에 미치는 영향을 조사하였다. 발포제로 AC(azodicarbonamide)와 OBSH(oxybisbenzene sulfonyl hydrazide)를 섞어 주었을때 발포시간이 단축되는 효과가 있었으며 NBR의 양은 PVC 100phr에 대해 30phr 정도가 이상적이었다. 가교제만 단독으로 사용하였을때 보다 가교촉진제를 가교제와 함께 사용하였을때가 cell이 우수하였다. 가소제 DOP(dioctyl phthalate)에 ESO(epoxydized soybean oil)를 같이 첨가시켰을때 우수한 cell구조를 가지는 스폰지를 얻었다. 최적조건에서 생성된 발포체의 인장강도는 공업용 기준치인 120 psi를 초과 하였다.
The effects of chemical blowing agent, composition ratio of PVC and NBR, crosslinking agent, and plasticizer on the blowing ratios and cell status of foams were investigated for PVC/NBR blend systems. The optimum composition ratio of PVC/NBR was 100/30. The mixed system of AC with OBSH as blowing agent makes shorter blowing time. The use of accelerator together with crosslinking agent resulted in a more stable cell structure. The foam with excellent structure was obtained at mixture of DOP and ESO as the plasticizer. The tensile strength of PVC/NBR foam produced at an identified optimum condition exceeded the industrial standard value 120 psi.
  1. "고무공업편람," 고무학회 편찬위원회 편, 도서출판 세화 (1990)
  2. Dowd RT, J. Cell. Plast., Sep., 262 (1966)
  3. Klempner D, Frisch KC, "Handbook of Polymeric Foams and Foam Technology," p. 253, New York and Barcelona (1991)
  4. Jayabalan M, Balakrishnan T, J. Cell. Plast., 399 (1985)
  5. 이충기, Lucky Polym. Technol., 23, 24 (1992)
  6. Valentine DL, Beeler AD, J. Cell. Plast., 52 (1972)
  7. Shutov FA, "Intergral/Structural Polymer Foams," p. 202, Springer-Verlag, Berlin Heidelberg (1986)
  8. Harding RH, J. Cell. Plast., July, 385 (1965)
  9. Landler Y, J. Cell. Plast., Sep., 400 (1967)
  10. Mccracken WJ, J. Cell. Plast., 150 (1984)
  11. Dutta A, Cakmak M, Rubber Chem. Technol., 65, 778 (1991)
  12. Gould LP, Rubber Chem. Technol., 943 (1944)
  13. Bascom RC, Rubber Age, 576 (1964)
  14. Zakrzewski GA, Polymer, 14, 347 (1973) 
  15. George KE, Joseph R, Francis DJ, J. Appl. Polym. Sci., 32, 2867 (1986) 
  16. George KE, Joseph R, Francis DJ, Thomas KT, Polym. Eng. Sci., 27, 1137 (1987) 
  17. Olabisi O, Robenson LM, Shaw MT, "Polymer-Polymer Miscibility," p. 206-210, Academic Press, New York (1979)
  18. Hamid SH, Amin MB, Maadhah AG, "Handbook of Polymer Degradation," p. 95, New York (1992)
  19. Fukumori K, Sato N, Kurauchi T, Rubber Chem. Technol., 64, 522 (1990)
  20. Nakajima N, Liu JL, Rubber Chem. Technol., 65, 453 (1990)
  21. Wang CB, Cooper SL, J. Polym. Sci. B: Polym. Phys., 21, 11 (1983)
  22. De SK, Bhowmick A, "Thermoplastic Elastomers from Rubber-Plastic Blends," p. 198, Ellis Horwood Limited (1990)
  23. Brown RP, "Physical Testing of Rubber," 2nd ed., p. 131, Elsevier Science Publication, London and New York (1986)
  24. Olabisi O, Robenson LM, Shaw MT, "Polymer-Polymer Miscibility," p. 206, Academic Press, New York (1979)
  25. Wade RC, Letendre C, J. Cell. Plast., 32 (1980)
  26. Sheppard CS, Schack HN, Mageli OL, J. Cell. Plast., Mar., 97 (1966)
  27. Tu CF, J. Cell. Plast., 92 (1978)
  28. 안태완, "고분자 화학," p. 330, 문운당, 서울 (1992)
  29. Barlow FW, "Rubber Compounding: Principles, Mateirals, and Techniques," p. 100, 236 New York and Basel (1988)
  30. Hofmann W, "Rubber Technology Handbook," p. 233 Munich Vienna, New York (1989)
  31. Ohm RF, "The Vanderbilt Rubber Handbook," 13th ed., R.T. Vanderbilt Compony Inc. (1990)