화학공학소재연구정보센터
Polymer(Korea), Vol.18, No.4, 463-472, July, 1994
내열성 Ethylene-Vinylchloride 공중합체의 합성과 열특성에 관한 연구
Studies on the Synthesis of Heat-Resistant Ethylene-Vinylchloride Copolymer and Their Thermal Properties
초록
ST-DVB 공중합체에 tinhydride를 고정한 환원제로 PVC를 부분환원하여 EV copolymer를 합성하였다. 환원제와 EV copolymer의 구조를 FT-IR 분광법으로 확인하였으며, EV copolymer의 조성변화, Tg, 분자량 및 열안정성 등을 조사하였다. EV copolymer의 수율은 32 %-57 %이었고, 중량평균 분자량은 3mole% DVB를 함유한 polymeric hydride 환원제를 사용한 반응의 경우 1.41-1.65× 104이었고, 5mole % DVB 경우에는 1.61-1.68×104이었다. 환원제량의 증가에 따라 EV copolymer내의 ethylene unit의 mole%는 증가하였으며, 최대 23.74mo1e% 이었으며, 환원제내의 DVB 함량의 3mole% 일 때가 5mol%보다 더 좋았다. EV 공증합체의 Tg는 ethylene unit의 조성에 따라 2-3개로 나타났으며, PVC의 Tg보다 낮았고, 공중합체는 block 형태임을 확인할 수 있었다. EV공중합체의 초기 열분해 온도는 240-248℃이었으며, 이들은 PVC의 초기열분해 온도보다 모두 높았다.
The ethylene-vinylchloride copolymers(HV copolymer) were synthesized by partial reduction of PVC using the ST57-DVB copolymer supported organotin hydride as a reducing agent. The basic structures of EV copolymer and reducing agents were studied by FT-IR spectroscopy. The mole ratio, the glass transition temperature(T), the molecular weight, and the thermal stability of copolymer were investigated. The yield of EV copolymer was about 32-57 percent. Weight average of molecular weight(Mw) of EV copolymer which has 3 mole% or 5 mole% of DVB as a crosslinking agent was 1.41-1.65×104 or 1.61-1.68×104, respectively. Ethylene unit in the EV copolymer was increased with increasing the amount of reducing agent, and their molar content reached to 23.74 mole percent. The reduction ability of redcing agent indicated that 3 mole% DVB was better than 5 mole% DVB involved reducing agent. According to the content of ethylene unit, two or three Tg were observed in the EV copolymer, and their values were lower than that of homo PVC. This indicates that EV copolymer has a structure of block copolymer, Initial thermal degradation temperature of EV copolymer was located between 240 and 248℃. All these temperature values were higher than that of PVC.
  1. Burgess RH, "Manufacture and Processing of PVC," vol. 16, p. 1, Appl. Sci. Publishers, LTD. London (1985)
  2. Talamini G, J. Polym. Sci. A: Polym. Chem., 4, 535 (1966)
  3. Joshi RM, Ind. J. Chem., 2, 125 (1964)
  4. Freeman M, Manning PP, J. Polym. Sci. A: Polym. Chem., 2, 2017 (1964)
  5. Minsker KS, Berlin AA, Lisickij VV, Kolesov SV, Plast. Massy., 10, 69 (1976)
  6. Bowmer TN, Tonelli AE, J. Polym. Sci. B: Polym. Phys., 24, 1631 (1986) 
  7. Narita S, Ichinohe S, Enomoto S, J. Polym. Sci., 37, 281 (1959) 
  8. Maddams WF, Tooke PB, J. Makromol. Sci. Chem., A17, 951 (1982)
  9. Bowmer TN, Tonelli AE, Macromolecules, 19, 500 (1986) 
  10. Pierre LE, Gupta VP, J. Polym. Sci. A: Polym. Chem., 2, 1841 (1973)
  11. Starner WH, Schilling FC, J. Am. Chem. Soc., 12(1), 341 (1979) 
  12. Schilling FC, Tonelli AE, Valenciano M, Macromolecules, 18, 356 (1985) 
  13. Miller BL, Herschberger JW, J. Polym. Sci. C: Polym. Lett., 25, 219 (1987) 
  14. Neumann WP, Synthesis, 537 (1971) 
  15. Braun D, Mao W, Bohringer B, Garbella RW, Angew. Chem.-Int. Edit., 141, 113 (1986)
  16. Jurrian C, Heuvel MV, Weber JM, Angew. Chem.-Int. Edit., 184, 2261 (1983)
  17. Millan J, Martinez G, Mijangos C, J. Polym. Sci. A: Polym. Chem., 18, 505 (1980)
  18. Naqvi MK, Polym. Degrad. Stabil., 17, 341 (1987) 
  19. Tonelli AE, Schilling FC, Angew. Chem.-Int. Edit., 19, 498 (1986)