화학공학소재연구정보센터
Polymer(Korea), Vol.18, No.3, 347-357, May, 1994
희석제 분자량 변화 및 공중합체 첨가를 이용한 열유도 상분리막의 구조 조절
Structure Design of TIPS(Thermally-Induced Phase Separation) Membrane by Controlling Molecular Weight of Diluent and by Adding Block Copolymer
초록
열유도 상분리 공정을 이용하여 nylon 12 및 nylon 6와 여러 가지 분자량을 갖는 poiy(ethylene glycol), PEG로 구성된 블렌드로부터 제조한 고분자 분리막(polymeric membrane)의 구조조절에 관한 연구를 수행하였다. 용융 블렌딩(melt blending)으로 제조된 각 시편들의 상분리 온도를 thermo-optical microscope를 사용하여 측정하였으며, 상분리 온도로부터 Flory-Huggins이론을 사용하여 블렌드간의 상호작용계수를 계산하였다. PEG말단기인 hydroxyl group이 분자 상호작용에 미치는 영향을 해석하기 위하여 binary interaction model과 Massa method를 이용하였다. 일정한 quenching depth 하에서 droplet의 크기가 희석제 분자량의 변화로 조절될 수 있음을 확인하였다. nylon6와 PEO로 구성된 블록공중합체를 nylon 6/PEG 블렌드에 첨가하여 droplet의 크기가 1/10수준까지 감소되는 상용화 효과를 관찰하여 적절한 블록 공중합체를 선택함으로서 열유도 상분리막의 구조조절이 가능함도 확인하였다. 그러나 nylon 12/PEG 블렌드의 경우에는 블록공중합체의 첨가에 의한 특별한 효과가 없었다.
Thermally-induced phase separation, TIPS, process was applied to the binary blends of nylon 12 and nylon 6 with Poly(ethylene glycol), PEG. having various molecular weights. Structure control of the membranes prepared from those systems were performed. Phase separation temperatures of the melt blended samples were determined by using a thermo-optical microscope. Interaction parameters include in binary pair were evaluated from phase separation temperature using Flory-Hugging theory. The chain end effects of hydroxyl group in PEG on miscibility were considered by using binary interaction model and Massa Plot. Droplet size variation depending on the diluent molecular weight were determined under a certain quenching depth by using a thermo-optical microscope. It was confirmed that the droplet size of the TIPS membrane could be controlled by changing molecular weight of PEG. The size of droplet was controlled effectively by adding block copolymer composed of nylon 6 and poly(ethylene oxide), PEO to the blend of nylon 6 and PEG, while it did not work on nylon 12 blend with PEG.
  1. Castro AJ, U.S. Patent, 4,247,498, Assigned to Akzona Inc. (1981)
  2. Lloyed DR, Barlow JW, Kinzer KE, AIChE Symp. Ser., 84(261), 28 (1989)
  3. Kim SS, Ph.D. Dissertation, The University of Texas at Austin, August (1990)
  4. Kesting RE, "Synthetic Polymeric Membrane," John Wiley & Sons, NY (1985)
  5. Char BJ, J. Membr. Sci., in preparation
  6. Legrand DG, Gains GL, J. Colloid Interface Sci., 42, 181 (1971) 
  7. Helfand E, Sapse AM, J. Chem. Phys., 62, 1327 (1975) 
  8. Heinrich M, Wolf BA, Polymer, 33, 1926 (1992) 
  9. Lifshitz IM, Slyzov VV, J. Phys. Chem. Solids, 19, 35 (1961) 
  10. Subramanian PM, Mehra M, Polym. Eng. Sci., 27, 663 (1987) 
  11. Kamel MR, Jinnah IA, Utracki LA, Polym. Eng. Sci., 24, 1337 (1984) 
  12. Fayt R, Jerome R, Teyssie P, J. Polym. Sci. B: Polym. Phys., 28, 1699 (1990) 
  13. Anastasiadis SH, Gancarz I, Koberstein JT, Macromolecules, 21, 2928 (1988)
  14. Wagner M, Wolf BA, Polymer, 34, 1460 (1993) 
  15. Thomas S, Prud'homme RE, Polymer, 33, 4260 (1992) 
  16. Flory PJ, J. Chem. Phys., 10, 51 (1942) 
  17. Huggins ML, J. Chem. Phys., 9, 440 (1941)
  18. Paul DR, Barlow JW, Keskkular H, In Encyclopedia of Polymer Science and Engineering, Vol. 12, p. 399, John Wiley & Sons, NY (1988)
  19. Paul DR, Barlow JW, Polymer, 25, 487 (1987) 
  20. Massa DJ, Adv. Chem. Ser., 176, 433 (1979)
  21. Krevlen V, "Properties of Polymers," Elsevier, NY (1990)