Journal of the American Chemical Society, Vol.129, No.42, 12652-12652, 2007
Noncoherent low-power upconversion in solid polymer films
Noncoherent low-power photon upconversion has been realized in solid thin films composed of an ethyleneoxide/epichlorohydrin copolymer doped with palladium octaethylporphyrin (PdOEP) and 9,10-diphenylanthracene (DPA). Selective excitation of PdOEP at 544 nm generates easily visualized DPA fluorescence in the blue with noncoherent light sources under ambient laboratory conditions. The incident excitation power dependence is quadratic in nature, exemplifying that sequential one-photon absorption by PdOEP leads to the sensitization of two triplet DPA chromophores, which in turn annihilate to produce the upconverted singlet DPA fluorescence. Time-resolved emission experiments confirm that the solid host facilitates these sequential bimolecular reactions leading to delayed DPA fluorescence; however, these processes are notably slower than the analogous photochemistry in fluid solution.