Journal of Power Sources, Vol.173, No.2, 721-728, 2007
Stability of poly(vinylidene fluoride-co-hexafluoropropylen)-based composite gel electrolytes with functionalized silicas
Various aspects of stability of composite polymer gel electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF/HFP) polymeric matrix and functionalized precipitated silicas have been studied. The silica fillers have been surface modified with methacryloxy or vinyl groups by partially replacing silanol groups, so that bi-functional (hydrophilic/hydrophobic) character of the inorganic fillers was created. Compatibility of the gel electrolytes with lithium electrode has been examined by means of EIS technique. Electrochemical stability window has been studied with the application of cyclic voltammetry technique with fast sweeping rate. Passive layer formation on graphite electrode has been investigated for all the gel electrolytes by means of cyclic voltammetry with slow scan rate and galvanostatic charging/discharging technique. It has been shown that stability of the interface between lithium and gel electrolyte is significantly improved when bi-functional silicas are used as fillers. The phenomenon has been ascribed to more effective scavenging of trace impurities as well as to better shielding of the electrode surfaces. Cyclic voltammetry on platinum has revealed excessive electrochemical redox processes upon prolonged cycling for all the gel electrolytes. It has been demonstrated that stable passive layers are formed on graphite electrodes upon electrochemical reduction in the presence of the studied composite polymer gel electrolytes. (c) 2007 Elsevier B.V. All rights reserved.