Journal of Physical Chemistry B, Vol.111, No.44, 12933-12937, 2007
Effect of a low-dielectric interior on DNA electrostatic response to twisting and bending
We study the effects of a low-dielectric core of rod-like macromolecules on their electrostatic persistence lengths. We use the exact solution of the linear Poisson-Boltzmann equation for the potential of a charge on the surface of a low-dielectric cylinder. We apply the results to the B-DNA molecule, modeled as a double helical array of discrete charges wound on the surface of a low-dielectric rod. For this charge geometry, we calculate the change in the electrostatic twist persistence as compared to DNA with a water-permeable core. We also discuss possible effects of the low-dielectric molecular core on DNA bending persistence.