Korean Chemical Engineering Research, Vol.46, No.1, 56-62, February, 2008
삼상 Swirling 유동층에서 열전달 특성
Characteristics of Heat Transfer in Three-Phase Swirling Fluidized Beds
E-mail:
초록
직경이 0.102 m이고 높이가 2.5 m인 삼상 swirling(나선) 흐름 유동층에서 열전달 특성을 고찰하였다. 기체유속(UG), 액체유속(UL), 유동 입자의 크기(dp), 그리고 연속상인 액체의 나선 유도 흐름 액체량의 비(RS)가 유동층 내부 열원과 유동층간의 총괄 열전달 계수에 미치는 영향을 검토하였다. 유동층 내부 열원과 유동층간의 열전달 특성은 열원 표면과 유동층간의 온도차 요동 자료의 위상공간 투영과 Kolmogorov 엔트로피 해석으로 고찰할 수 있었으며, 나선 유도 흐름 액체량의 비(RS)가 0.1에서 0.4까지 증가할수록 온도차 요동 자료의 위상 공간 투영은 점점 안정되고 규칙성이 증대되는 상태를 나타내고, Kolmogorov 엔트로피 값은 감소하는 경향을 나타내었다. 열원 표면과 유동층간의 온도차 요동 자료의 Kolmogorov 엔트로피 값은 나선 유도 흐름 액체량이 증가함에 따라 최소값을 나타내었다. 열원과 유동층간의 총괄 열전달 계수는 기체 유속 및 유도입자의 크기가 증가함에 따라서 증가하였으나, 액체유속, 층공극률, 나선 유도 흐름 액체량의 비가 증가함에 따라서 최대값을 나타내었다. 내부 열원과 유동층간의 총괄 열전달 계수가 최대값을 나타낼 때의 액체의 유속 조건에서 온도차 요동자료의 Kolmogorov 엔트로피의 값도 최대값을 나타내었다. 삼상 나선흐름 유동층에서 열전달 계수와 Kolmogorov 엔트로피를 실험 변수 및 무차원군의 상관식으로 나타낼 수 있었다.
Characteristics of heat transfer were investigated in a three-phase swirling fluidized bed whose diameter was 0.102 m and 2.5 m in height. Effects of gas and liquid velocities, particle size and liquid swirling ratio (RS) on the immersed heater-to-bed overall heat transfer coefficient were examined. The heat transfer characteristics between the immersed heater and the bed was well analyzed by means of phase space portraits and Kolmogorov entropy(K) of the time series of temperature difference fluctuations. The phase space portraits of temperature difference fluctuations became stable and periodic and the value of Kolmogorov entropy tended to decrease with increasing the value of liquid swirling ratio from 0.1 to 0.4. The value of Kolmogorov entropy exhibited its minimum with increasing liquid swirling ratio. The value of overall heat transfer coefficient (h) showed its maximum with the variation of liquid velocity, bed porosity or liquid swirling ratio, but it increased with increasing gas velocity and particle size. The value of K exhibited its maximum at the liquid velocity at which the h value attained its maximum. The overall heat transfer coefficient and Kolmogorov entropy were well correlated in terms of dimensionless groups and operating variables.
- Fan LS, Gas-Liquid-Solid Fluidization Engineering, Butterworths, Stonehair, MA. (1989)
- Kim SD, Kang Y, Chem. Eng. Sci., 52(21-22), 3639 (1997)
- Kang Y, Cho YJ, Lee CG, Song PS, Kim SD, Can. J. Chem. Eng., 81(6), 1130 (2003)
- Lefebvre S, Guy C, Chaouki J, Chem. Eng. J., 133(1-3), 85 (2007)
- Kim SD, Kang Y, Stud. Surf. Sci. Catal., 159, 103 (2006)
- Son SM, Shin HJ, Kang SH, Kang Y, Kim SD, J. Korean Ind. Eng. Chem., 15(6), 652 (2004)
- Son SM, Kang SH, Kang Y, Kim SD, Korean Chem. Eng. Res., 44(5), 505 (2006)
- Lin TJ, Hung-Tzu C, Catal. Today, 79(1-4), 159 (2003)
- Shin KS, Song PS, Lee CG, Kang SH, Kang Y, Kim SD, Kim SJ, AIChE J., 51(2), 671 (2005)
- Van der Bleek CM, Shouten, JC, Chem. Eng. J., 53(1), 75 (1993)
- Cho YJ, Song PS, Kim SH, Kang Y, Kim SD, J. Chem. Eng. Jpn., 34(2), 254 (2001)
- Grassberger P, Procaccia I, Physical review A, 28(4), 2591 (1983)