화학공학소재연구정보센터
Polymer(Korea), Vol.32, No.1, 70-76, January, 2008
UV 조사에 의한 아민화 Poly(ethersulfone) 이온교환막의 제조 및 특성
Preparation and Properties of Aminated Poly(ethersulfone) Ion-Exchange Membrane by UV Irradiation Method
E-mail:
초록
UV 조사방법으로 poly(ethersulfone) PES 막에 1,2,3,4-butanetetracarboxylic acid(BTCA)를 그래프트 공중합하고, 이를 아민화시켜 PES 음이온교환막을 합성하였으며, 이들의 구조 및 특성을 확인하였다. PES 음이온교환막의 그래프트율과 아민화율은 반응 시간에 따라 증가하였으며, 80분에서 최대 134%, 1.20 mmol/g이었다. PES 음이온교환막의 초기 열분해온도는 400 ℃로 표면개질반응이 진행됨에 따라 감소하였다. PES 음이온교환막의 접촉각은 아민화율이 증가함에 따라 68.1°∼40.2°로 감소하였으며, 함수율과 이온교환용량은 UV 조사시간이 증가함에 따라 80분까지 선형적으로 증가하였다. 또한 막의 평균 기공의 크기와 비표면적은 PES 막, PES-g-BTCA 공중합체막, PES 음이온교환막의 순이었으며, 평균기공 크기값은 624.8, 359.7, 138.5 Å, 비표면적은 10.1, 9.7, 1.7 m2/g이었다.
The PES-g-BTCA membrane was synthesized by UV irradiation method and then used to be modified into the PES anion exchange membrane by the amination reaction. Their chemical structures and adsorption properties were investigated. The degree of grafting and amination were increased with increasing the reaction time and had the maximum values of 138% and 1.20 mmol/g at 80 min, respectively. The initial thermal degradation temperature of PES membrane was 400 ℃. Which was reduced as the surface modification reaction had proceeded. The values of contact angle for PES membrane were decreased from 68.1 to 40.2° with increasing the extent of amination, the water up-take and ion exchange capacity were also increased with increasing UV irradiation time until 80 min. The average pore size and BET surface area were decreased in order of PES, PES-g-BTCA, and aminated PES ion exchange membrane. Their average pore sizes were 624.8, 359.7, and 138.5 Å, and their surface areas were 10.1, 9.7, and 1.7 m2/g, respectively.
  1. Sherry S, Fibrinolysis, thrombosis, and Hemostasis, Philadelphia, London (1992)
  2. Lijnen HR, Collen D, Tromb. Haemost., 66, 88 (1991)
  3. Chung KH, Sunwoo MW, Woo HS, Baik SB, Korean J. Biotechnol. Bioeng., 5(2), 183 (1990)
  4. Williams JRB, Brit. J. Exp. Pathol., 32, 530 (1951)
  5. Albrechtsen OK, Acta Physiol. Scand., 39, 284 (1957)
  6. Albrechtsen OK, Brit. J. Haematol., 3, 284 (1957)
  7. Giuffrida, PCT Int. Appl WO 94. 06, 850 (1994)
  8. Gunther EM, J. Membr. Sci., 8, 309 (1981)
  9. Ma HM, Davis RH, Bowman CN, Polymer, 42(20), 8333 (2001)
  10. Kim SY, Kim YJ, Kwon OH, Nho YC, Choi CN, J. Kor. Fiber Soc., 37, 582 (2000)
  11. Ishihara K, Iwasaki Y, Ebihara S, Shindo Y, Nakabayash N, Colloids Surf. B: Biointerfaces, 18, 325 (2000)
  12. Gupta B, Anjum N, Sen K, J. Appl. Polym. Sci., 85(2), 282 (2002)
  13. Fouassier JP, Allonas X, Burget D, Prog. Org. Coat., 47, 16 (2003)
  14. Li D, Zhu S, Pelton RH, Eur. Polym. J., 34, 1199 (1998)
  15. Yoon CH, Ham HS, Chae KH, Polym.(Korea), 23(2), 238 (1999)
  16. Ulbricht M, React. Funct. Polym., 31, 165 (1996)
  17. Borcherding H, Hicke HG, Jorcke D, Ulbricht M, Desalination, 149(1-3), 297 (2002)
  18. Kawai T, Saito K, Sugita K, Kawakami T, Kanno J, Katakai A, Seko N, Sugo T, Radiat. Phys. Chem., 59, 405 (2000)