화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.19, No.4, 227-232, December, 2007
Effect of shear on poly(styrene-b-isoprene) copolymer micelles
E-mail:
The use of various shearing apparatuses to study the phase behavior of poly(styrene-b-isoprene) diblock copolymer micelles is described. A DMTA rheometer was modified so that one can apply oscillatory shear and obtain the scattering pattern along the shear gradient direction. A cone and plate shear cell was designed to access scattering along the shear vorticity direction, and both oscillatory and steady shear can be applied. The most popular way to employ steady shear on relatively low viscosity fluids is to use a Couette cell, because a high shear rate can be readily achieved without disturbing the sample by overflow. In this work, oscillatory shear was used to obtain a single crystal-like scattering pattern, and thereby to examine the mechanism of the thermotropic transition between face-centered cubic (fcc) and body-centered cubic (bcc) lattices. By applying the steady shear, the response of the fcc lattices to various shear rates is discussed.
  1. Bang J, Lodge TP, J. Phys. Chem. B, 107(44), 12071 (2003)
  2. Bang J, Lodge TP, Phys. Rev. Lett., 93, 245701 (2004)
  3. Bang J, Lodge TP, Wang X, Brinker KL, Burghardt WR, Phys. Rev. Lett., 89, 215505 (2002)
  4. Bang J, Viswanathan K, Lodge TP, Park MJ, Char K, J. Chem. Phys., 121(22), 11489 (2004)
  5. Bassett WA, Huang E, Science, 238, 780 (1987)
  6. Caputo FE, PhD thesis, Northwestern University (2002)
  7. Caputo FE, Burghardt WR, Krishnan K, Bates FS, Lodge TP, Phys. Rev. E, 66, 041401 (2002)
  8. Castelletto V, Hamley IW, Holmqvist P, Rekatas C, Booth C, Grossmann JG, Colloid Polym. Sci., 279, 621 (2001)
  9. Dahmen U, Acta Mater., 30, 63 (1982)
  10. Daniel C, Hamley IW, Mingvanish W, Booth C, Macromolecules, 33(6), 2163 (2000)
  11. Daniel C, Hamley IW, Wilhelm M, Mingvanish W, Rheol. Acta, 40(1), 39 (2001)
  12. Diat O, Porte G, Berret JF, Phys. Rev. B, 54, 869 (1996)
  13. Eiser E, Molino F, Porte G, Diat O, Phys. Rev. B, 61, 6759 (2000)
  14. Eiser E, Molino F, Forte G, Pithon X, Rheol. Acta, 39(3), 201 (2000)
  15. Gotoh Y, Aral I, Jpn. J. Appl. Phys., 25, L583 (1986)
  16. Hamley IW, Mortensen K, Yu GE, Booth C, Macromolecules, 31(20), 6958 (1998)
  17. Hamley IW, Pople JA, Booth C, Derici L, Imperor-Clerc M, Davidson P, Phys. Rev. E, 58, 7620 (1998)
  18. Hamley IW, Pople JA, Fairclough JPA, Ryan AJ, Booth C, Yang YW, Macromolecules, 31(12), 3906 (1998)
  19. Hamley IW, Pople JA, Fairclough JPA, Terrill NJ, Ryan AJ, Booth C, Yu GE, Diat O, Almdal K, Mortensen K, Vigild M, J. Chem. Phys., 108(16), 6929 (1998)
  20. Hanley KJ, Lodge TP, Huang CI, Macromolecules, 33(16), 5918 (2000)
  21. Headley TJ, Brooks JA, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 33A, 5 (2002)
  22. Lodge TP, Bang J, Park MJ, Char K, Phys. Rev. Lett., 92, 145501 (2004)
  23. Hanley KJ, Lodge TP, Huang CI, Macromolecules, 33(16), 5918 (2000)
  24. Loose W, Ackerson BJ, J. Chem. Phys., 101(9), 7211 (1994)
  25. Mcconnell GA, Lin MY, Gast AP, Macromolecules, 28(20), 6754 (1995)
  26. Molino FR, Berret JF, Porte G, Diat O, Lindner P, Eur. Phys. J. B, 3, 59 (1998)
  27. Olsen GH, Jesser WA, Acta Mater., 19, 1299 (1971)
  28. Olsen GH, Jesser WA, Acta Metall., 19, 1009 (1971)
  29. Shimizu K, Nishiyama Z, Metall. Trans., 3, 1055 (1972)
  30. Wada M, Uda S, Kato M, Phil. Mag. A, 59, 31 (1989)
  31. Wang CY, Lodge TP, Macromolecules, 35(18), 6997 (2002)
  32. Wentzcovitch RM, Phys. Rev. B, 50, 10358 (1994)
  33. Wentzcovitch RM, Cohen ML, Phys. Rev. B, 37, 5571 (1988)
  34. Wentzcovitch RM, Krakauer H, Phys. Rev. B, 42, 4563 (1990)