Chemical Engineering & Technology, Vol.30, No.7, 926-931, 2007
Flow characteristics and Shannon entropy analysis of dense-phase pneumatic conveying of pulverized coal with variable moisture content at high pressure
Experiments consisting of dense-phase pneumatic conveying of pulverized coal using nitrogen were carried out in an experimental test facility, with a conveying pressure of up to 4 MPa. The influences of the conveying differential pressure, the coal moisture content, the gas volume flow rate and the superficial velocity, on the solid-gas ratios, were investigated. The Shannon entropy analysis of the pressure fluctuation time series was developed to reveal the flow characteristics. By investigation of the distribution of the Shannon entropy at different conditions, the flow stability and the evolutional tendency of Shannon entropy, in different regimes and regime transition processes, were revealed, and the relationship between Shannon entropy and the flow regime was also established. The results indicate that the solid-gas ratio and the Shannon entropy rise with increases in conveying differential pressure. The solid-gas ratio and the Shannon entropy reveal preferable correlation with the superficial gas velocity. Shannon entropy is different for different flow regimes, and can be used to identify the flow regimes. Both the mass flow rate and the Shannon entropy, decrease with increases in moisture content. Shannon entropy analysis is a feasible approach to researching the characteristics of the flow regime, the flow stability and the flow regime transitions in dense-phase pneumatic conveying systems, at high pressure.