화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.18, No.6, 545-551, December, 2007
침전법으로 TiCl4 수용액의 산농도 조절을 통한 나노크기의 순수한 브루카이트상 이산화티타늄 분말 제조
Synthesis of Pure Brookite-type TiO2 Nanoparticles from Aqueous TiCl4 Solution with controlled Acidity by Precipitation Method
E-mail:
초록
TiCl4 수용액의 침전반응으로 TiO2를 제조할 때 침전용액의 염산농도와 반응온도 및 Ti4+농도는 TiO2 침전물의 결정구조를 결정하는 중요한 인자이며, 이들의 조절을 통하여 브루카이트상의 부피분율 제어가 가능하다. 순수한 브루카이트상 이산화티타늄을 제조하기 위해서는 Ti4+농도를 1.0 M 이하로 유지하고, 침전용액의 염산농도를 2.53∼6.41 M이 되도록 조절한후 70 ℃ 이하에서 20 h 침전반응 시켜야 한다. 한편, 순수한 브루카이트상 분말을 열처리한 결과 브루카이트상은 열처리 온도의 증가에 따라 아나타제상으로 상전이 된 후 최종적으로 루틸상으로 상변화가 진행되었다.
HCl concentration, reaction temperature, and Ti4+ concentration are the decisive factors in determining the structure of precipitates in the process of synthesis of TiO2 particles from aqueous TiCl4 solution by precipitation and the volumetric proportion of brookite phase in TiO2 particles can be controlled by these factors. Pure brookite-type TiO2 nanoparticles were synthesized by heating the aqueous TiCl4 solution with no more than 1.0 M of Ti4+, in which the concentration of HCl was kept in the range of about 2.53∼6.41 M during reaction, at the temperature below 70 ℃ for 20 h. Also, Pure brookite was finally transformed to a rutile phase via an anatase phase through heat-treatment.
  1. Han SH, Yun YH, Lee SH, Choi SH, J. Korean Cera. Soc., 36, 691 (1999)
  2. Jun HT, Choi YK, Kim BH, J. Cera. Soc., 36, 1163 (1999)
  3. Nam HD, Lee BH, Kim SJ, Jung CH, Lee JH, Park S, Jap. J. Appl. Phy., 37, 4603 (1998)
  4. Kim SJ, Park SD, Jeong YH, J. Am. Ceram. Soc., 82, 927 (1999)
  5. Zheng Y, Shi E, Chi S, Li W, Hu X, J. Mater. Sci. Lett., 19, 1445 (2000)
  6. Zhang Q, Gao L, Guo J, J. European Ceram. Soc., 20, 2153 (2000)
  7. Yang J, Mei S, Ferreira JMF, J. Am. Ceram. Soc., 83(6), 1361 (2000)
  8. Hu Y, Tsai HL, Huang CL, J. European Ceram. Soc., 23, 691 (2003)
  9. Cheng H, Ma J, Zhao Z, Qi L, Chem. Mater., 7, 663 (1995)
  10. Pottier A, Chaneac C, Tronc E, Mazerolles L, Jolivet J, J. Mater. Chem., 11, 1116 (2001)
  11. Kominami H, Kohno M, Kera Y, J. Mater. Chem., 10, 1151 (2000)
  12. Lee JH, Yang YS, Korean J. Mater. Res., 12(12), 947 (2002)
  13. Lee JH, Yang YS, J. Korean Ind. Eng. Chem., 14(1), 103 (2003)
  14. Lee JH, Yang YS, J. Korean Ind. Eng. Chem., 14(2), 224 (2003)
  15. Lee JH, Yang YS, Appl. Chem., 7(2), 499 (2003)
  16. Lee JH, Yang YS, J. European Ceram. Soc., 25, 3573 (2005)
  17. Lee JH, Yang YS, J. Mater. Sci. Lett., 40, 2843 (2006)
  18. Lee JH, Yang YS, Mater. Chem. Phys., 93(1), 237 (2005)
  19. Lee JH, Yang YS, J. Korean Ind. Eng. Chem., 16(6), 785 (2005)
  20. Lee JH, Yang YS, J. Mater. Sci., 41, 557 (2005)
  21. Lee JH, Yang YS, Appl. Chem., 6(2), 667 (2002)
  22. Ye X, Sha J, Jiao Z, Zhang L, Nanostruct. Mater., 8, 919 (1997)
  23. Zheng Y, Shi E, Chen Z, Li W, Hu X, J. Mater. Chem., 11, 1547 (2001)
  24. Zheng YQ, Shi EW, Cui SX, Li WJ, Hu XF, J. Am. Ceram. Soc., 83(10), 2634 (2000)
  25. Bhave RC, Lee BI, Materials Science and Engineering: A., In Press Manuscript, 1 March (2007)
  26. Lee BI, Wang X, Bhave RC, Hu M, Mater. Lett., 60, 1179 (2006)
  27. Cassaignon S, Koelsch M, Jolivet JP, J. Physics and Chemistry of Solids., In Press Corrected Proof, 22 February (2007)
  28. Tompsett GA, Bowmaker GA, Cooney RP, Metson JB, Rodgers KA, Seakins JM, J. Raman Spectrosc., 26, 50 (1995)
  29. Wang CC, Ying JY, Chem. Mater., 11, 3113 (1999)
  30. Zhang HZ, Banfild JF, J. Mater. Chem., 8, 2073 (1998)
  31. Girbb AA, Banfild JF, Am. Mineral., 82, 717 (1997)
  32. Hwu Y, Yao YD, Cheng NF, Tung CY, Lin HM, Nanostruct. Mater., 9, 355 (1997)
  33. Zhang Y, Banfild JF, Materials Chem and Phys: B., 104, 3841 (2000)
  34. Liu W, Chen AP, Lin JP, Dai ZM, Qiu W, Liu W, Zhu MQ, J. Am. Ceram. Soc., 88(1), 168 (2005)
  35. Jamison JC, Olinger B, Am. Mineral., 54, 1477 (1969)
  36. Arnal PRJP, Corriu D, Leclercq P, Mutin H, Vioux A, J. Mater. Chem., 6, 1925 (1996)