Fuel Processing Technology, Vol.88, No.2, 187-198, 2007
Numerical study on microscopic mixing characteristics in fluidized beds via DEM
In this paper, discrete element method (DEM), combined with computational fluid dynamics (CFD), is used to investigate the micro-mixing process in fluidized beds (FBs) of uniform particles. With the aid of snapshots and adoption of Lacey and Ashton indexes, mixing evolvement for two cases, fluidized bed using horizontal distributor with even gas supply and fluidized bed using inclined distributor with uneven gas supply, is discussed in detail. Results indicate that the Ashton index appears to be more effective in assessing the mixing dynamics in this work. Further analyses illustrate that in the case of horizontal distributor incorporated with even gas supply, diffusive mixing pattern is predominant, since bubbles lateral motion is reduced in such a bed; whereas, there is a faster convective mixing process in a fluidized bed using inclined distributor with uneven gas feed, followed by shear mixing. Generally, localized air supply induces the density gradient of particle distribution in the bed, which is the basic agent of convective particle stream. The analyses are confirmed by the comparison of solid flux during the simulations of the two cases. In addition, the mixing mechanism and the mixing time scale agree well with published experimental results. (C) 2006 Elsevier B.V. All rights reserved.