Protein Expression and Purification, Vol.30, No.1, 43-54, 2003
Heterologous expression of enzymopenic methemoglobinemia variants using a novel NADH : cytochrome c reductase fusion protein
Hereditary enzymopenic methemoglobinemia is a rare disease that predominantly results from defects in either the erythrocytic (type I) or microsomal (type II) forms of the enzyme NADH:cytochrome b(5) reductase (EC 1.6.2.2). All 25 currently identified type I and type II methemoglobinemia mutants have been expressed in Escherichia coli using a novel six histidine-tagged rat cytochrome b(5)/cytochrome b(5) reductase fusion protein designated NADH:cytochrome c reductase (H6NCR). All 25 H6NCR variants were isolated and demonstrated to result in two groups of expression products. The first group of 16 mutants, which included the majority of the type I mutants, included K116Q, P131L, L139P, T183S, M193V, S194P, P211L, L215P, A245T, A245V, C270Y, E279K, V305R, V319M, M340-, and F365-, and yielded full-length fusion proteins that retained variable levels of NADH:cytochrome c reductase (NADH:CR) activity, ranging from approximately 2% (M340-) to 92% (K116Q) of that of the wild-type fusion protein. In contrast, the remaining nine mutants that represented the majority of the type 11 variants, comprised a second group that included Y109*, R124Q, Q143*, R150*, P162H, V172M, R226*, C270R, and R285*, and resulted in truncated H6NCR variants that retained the amino-terminal cytochrome b(5) domain but were devoid of NADH:CR activity due to the absence of the cytochrome b(5) reductase flavin domain. Kinetic analyses of the first group of full-length mutant fusion proteins indicated that values for both k(cat) and K-m(NADH) were decreased and increased, respectively, indicating that the various mutations affected both substrate affinity and/or turnover. However, for the second group, the truncated products were the result of incomplete production of the carboxyl-terminal flavin-containing domain or instability of the expression products due to improper folding and/or lack of flavin incorporation. (C) 2003 Elsevier Science (USA). All rights reserved.