화학공학소재연구정보센터
Polymer(Korea), Vol.17, No.1, 20-31, January, 1993
Decorated-UNIQUAC모델에 의한 PEG 수용액의 고리형 상평형 계산
Phase Equilibrium Calculation of Polyethyleneglycol-water Systems with Closed-loop Phase Behaviors by Decorated-UNIQUAC Model
초록
고리형 액액 상평형도를 갖는 polyethyleneglycol(PEG)-물계의 액액 상평형 계산모델로서 보조격자(decorated-UNIQUAC)모델을 사용하였다. 이 모델은 보조격자의 개념을 UNIQUAC모델에 적용한 것이다. PEG-물계는 고리형 상태도를 갖는 것으로 알려져 왔는데 그 원인을 온도에 따른 상호작용력의 변화에 기인한다고 알려져 왔다. 그러나 본 계산에서 상호작용에너지는 온도에 무관하고 작용점과 그들의 상대적인 배열에 기초를 두었는데 이들이 거시적 분리에 더 큰 영향을 갖는다. 작용하는 고분자의 단위로는 블롭(blob)을 사용하였으며 재판격화하여 UNIQUAC에 적용하였다. 이 액적의 크기는 용액의 상태뿐만 아니라 고분자의 사슬상태에도 큰 영향을 받는다. PEG의 분자량에 따라 계산해 본 결과 상태도의 크기와 형태를 잘 설명하고 있었다.
The c]osed-loop coexistance curves of polyethyleneglycol (PEG)-water mixtures of liquid-liquid equilibria were calculated by decorated-UNIQUAC model. The phase diagrams of the PEG-water systems, known to have closed-loop diagrams, were calculated with the temperature-independent interaction energies, the interaction sites and their relative arrangement. For the interactional units, the blob model was incorporated on the basis of the blob rescaling concept by correcting the overestimated size factor in decorated-UNIQUAC. The blob size depends on not only the solution states but also the chain properties of the polymer along with rigidity of polymer chain. For various molecular weights of PEG, the calculated results showed good agreements in the size and shape of phase diagrams.
  1. Prausnitz JM, Lichtenthaler RN, deAvoedo EG, "Molecular thermodynamics of Fluid-Phase Equilibria," 2nd ed., Prentic-Hall Inc. (1986)
  2. Lee CS, Korean Chem. Ind. Tech., 7(4), 19 (1989)
  3. Koningsveld R, Br. Polym. J., 7, 435 (1975)
  4. Lee HO, Ban YB, Kim JD, Korean J. Chem. Eng., 5(2), 147 (1988)
  5. Malcom GN, Rowlinson JS, Trans. Faraday Soc., 59, 921 (1957) 
  6. Saeki S, Kuwahara N, Natata M, Kaneko M, Polymer, 17, 658 (1976)
  7. Hirshfelder J, Stevenson D, Eyring H, J. Chem. Phys., 5, 896 (1937) 
  8. Eyring, Henderson D, Stover BJ, Ering EM, "Statistical Mechanics and Dynamics," 2nd Ed., John Wiley & Sons, Inc. (1982)
  9. Goldenstain RE, Walker JS, J. Chem. Phys., 78, 1492 (1983) 
  10. Flory PJ, "Principles of Polymer Chemistry," Cornell University Press (1953)
  11. Lhuillier D, Jorre JP, Macromol. Theory Simul., 17, 2652 (1984)
  12. Barker JA, J. Chem. Phys., 20, 1526 (1952) 
  13. Barker JA, Fock W, Discuss Faraday Soc., 15, 188 (1953) 
  14. Wilson KG, Phys. Rev., B, Condens. Matter, 4, 3174 (1971)
  15. Wilson KG, Rev. Modern Phys., 47, 733 (1975)
  16. Wheeler JC, J. Chem. Phys., 62, 433 (1975) 
  17. Anderson GR, Wheeler JC, J. Chem. Phys., 69(5), 2082 (1978) 
  18. Anderson GR, Wheeler JC, J. Chem. Phys., 73, 5778 (1980) 
  19. Kim YC, Kim JD, Fluid Phase Equilib., 41, 339 (1988)
  20. Abrams DS, Prausintz JM, AIChE J., 21, 116 (1975) 
  21. Ban YB, Kim YC, Kim JD, Fluid Phase Equilib., 53, 331 (1989) 
  22. Ban YB, Kim JD, Chapter 28 in "Computer Simulation of Polymers," ed. R.J. Roe, Prentice Hall, Englewood, Cliffs, N.J. (1991)
  23. Cotton JP, Farnoux B, Jannik G, Strazielle C, J. Polym. Sci. Polym. Symp., 42, 981 (1973)
  24. deGennes PG, "Scaling Concepts in Polymer Physics," Cornell Univ. Press
  25. Schafer L, Witten TA, J. Chem. Phys., 66, 2121 (1977) 
  26. DesCloizeaux L, Noda I, Macromolecules, 15, 1505 (1982) 
  27. Brandrup J, Immergut EH, "Polymer Handbook," 3rd Ed., John Wiley & Sons, Ind. (1989)
  28. Bondi A, "Physical Properties of Molecular Crystals, Liquid and Glasses," Sheel Development Co. (1968)
  29. Lee KO, Master Thesis, KAIST, Seoul (1990)