화학공학소재연구정보센터
Protein Expression and Purification, Vol.18, No.2, 182-192, 2000
Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli
Recombinant human growth hormone (r-hGH) was expressed in Escherichia coli as inclusion bodies. In 10 h of fed-batch fermentation, 1.6 g/L of r-hGH was produced at a cell concentration of 25 g dry cell weight/L. Inclusion bodies from the cells were isolated and purified to homogeneity. Various buffers with and without reducing agents were used to solubilize r-hGH from the inclusion bodies and the extent of solubility was compared with that of 8 M urea as well as 6 M Gdn-HCl. Hydrophobic interactions as well as ionic interactions were found to be the dominant forces responsible for the formation of r-hGH inclusion bodies during its high-level expression in E. coli. Complete solubilization of r-hGH inclusion bodies was observed in 100 mM Tris buffer at pH 12.5 containing 2 M urea. Solubilization of r-hGH inclusion bodies in the presence of low concentrations of urea helped in retaining the existing native-like secondary structures of r-hGH, thus improving the yield of bioactive protein during refolding. Solubilized r-hGH in Tris buffer containing 2 M urea was found to be less susceptible to aggregation during buffer exchange and thus was refolded by simple dilution. The r-hGH was purified by use of DEAE-Sepharose ion-exchange chromatography and the pure monomeric r-hGH was finally obtained by using size-exclusion chromatography. The overall yield of the purified monomeric r-hGH was similar to 50% of the initial inclusion body proteins and was found to be biologically active in promoting growth of rat Nb2 lymphoma cell lines.