Journal of Applied Microbiology, Vol.102, No.4, 954-962, 2007
Killing of spores of Bacillus subtilis by tert-butyl hydroperoxide plus a TAML((R)) activator
Aims: To determine the effectiveness of tert-butyl hydroperoxide (tBHP) plus the cationic surfactant cetyltrimethyl ammonium bromide (CTAB) and a tetraamido macrocyclic ligand (TAML((R))) activator in killing spores of Bacillus subtilis and the mechanisms of spore resistance to and killing by this reagent. Methods and Results: Killing of spores of B. subtilis by tBHP was greatly stimulated by the optimum ratio of concentrations of a TAML activator (1.7 mu mol l(-1)) to tBHP (4.4%, vol/vol) plus a low level (270 mg l(-1)) of CTAB. Rates of killing of spores lacking most DNA protective alpha/beta-type small, acid-soluble spore proteins (alpha(-)beta(-) spores) or the major DNA repair protein, RecA, by tBHP plus CTAB and a TAML activator were essentially identical to that of wild-type spore killing. Survivors of wild-type and alpha(-)beta(-) spores treated with tBHP plus CTAB and a TAML activator also exhibited no increase in mutations. Spores lacking much coat protein either because of mutation or chemical decoating were much more sensitive to this reagent than were wild-type spores, but were more resistant than growing cells. Wild-type spores killed with this reagent retained their large pool of dipicolinic acid (DPA), and the survivors of spores treated with this reagent were sensitized to wet heat. The tBHP plus CTAB and TAML activator-killed spores germinated with nutrients, albeit more slowly than untreated spores, but germinated faster than untreated spores with dodecylamine. The killed spores were also germinated by application of 150 and 500 megaPascals of pressure for 15 min and by lysozyme treatment in hypertonic medium, but these spores lysed shortly after their germination. Conclusions: The combination of tBHP plus CTAB and a TAML activator is effective in killing B. subtilis spores. The spore coat is a major factor in spore resistance to this reagent system, which does not kill spores by DNA damage or by inactivating some component needed for spore germination. Rather, this reagent system appears to kill spores by damaging the spore's inner membrane in some fashion. Significance and Impact of the Study: This work demonstrates that tBHP plus CTAB and a TAML activator is an effective and mild decontaminant for spores of Bacillus species. Evidence has also been obtained on the mechanisms of spore resistance to and killing by this reagent system.