화학공학소재연구정보센터
Advanced Functional Materials, Vol.17, No.2, 324-329, 2007
Optimized preparation of elastically soft, highly piezoelectric, cellular ferroelectrets from nonvoided poly(ethylene terephthalate) films
Electrically charged cellular polymer films can exhibit very high piezoelectric activity and are therefore more and more often employed in advanced electromechanical and electro-acoustical transducers. In this paper, we report an optimized sequence of steps for preparing such ferroelectrets from commercial nonvoided ploy(ethylene terephthalate) (PETP) films by means of foaming with CO2 biaxial mechanical stretching, controlled void inflation, and bipolar electric charging. The nonvoid PETP films foamed with supercritical CO2 at a suitably high pressure and subsequently annealed for stabilization. The cellular foam structure was further optimized by means of well controlled biaxial stretching in a commercial stretcher and sometimes subsequent inflamation in a pressure chamber. Bipolar electric charging of the internal voids was achieved through the application of high electric fields in an SF0 atmosphere. The new optimized PETP ferroelectric exhibit quite large piezoelectric coefficients up to almost 500 pCN(-1), for which unusually low elastic stiffness of only around 0.3 MPa are essential. The PETP foam ferroelectrics posses unclamped thickenss-extension resonance frequences between approximately 120 and 250 kHz, and are thus highly suitable for several established as well as novel ultrasonic-transductant applications.